Type 2 diabetes mellitus (T2DM) became the most prevalent health problem. Almost half of the world's people are ignorant that have diabetes. Menopause occurs as an important alteration in women through which take place the change in sex hormones, distribution in fat،s body, and metabolism, altogether which participate in the metabolism disease such as type 2 diabetes mellitus. Several studies have appeared the association between the TCF7L2 gene and different diseases like type 2 diabetes mellitus (T2DM). This study aimed to detect the relation of the genetic variation polymorphism for the TCF7L2 gene (rs12255372 G/T) in Iraqi women menopausal with T2DM. The outcomes indicated the increased levels of biochemical characteristics including HbA1C, Cholesterol, Triglyceride, Prolactin, Progesterone, and Estrogen and the decreased level of HDL with significant differences (P<0.05). While there was no association between SNP for TCF7L2 gene (rs12255372 G/T) in patients with T2DM when compared with control (P>0.05). Although that there was a significant association between the biochemical characteristics and genotypes for this SNP. In conclusion that SNP (rs12255372G/T) for the TCF7L2 gene is not represented as a risk factor in Iraqi women of menopausal with type 2 diabetes mellitus.
Serum adenosine deaminase (ADA) activity was determined in 30 blood sample of type 1 diabetic individuals 30 blood sample for the type 2 and 15 normal children as a control for type 1 15 normal adults as control for type 2. The mean ADA activity and specific activity in type 1 was (8.85± 5.55 U/mg of protein) which is compared with control (32.11± 1.54 U/mg of protein) while in type 2 was (48.46±11.91 U/mg of protein) is compared with control (5.18± 2.27 U/mg of protein ). We conclude that the altered blood level of ADA activity may help in predicting immunological dysfunction in diabetic individuals and also has a prognostic value.
We can summarize the main risk factors for type 2 diabetes mellitus (T2DM) by looking at our nutrition, age, and lifestyle. β-cell dysfunction and insulin resistance (IR) are outcomes of the pathophysiology of type 2 diabetes. As an indirect result of IR on important metabolic enzymes, lipid and lipoprotein abnormalities are also a factor in T2DM patients. Recent research has indicated that lipid fluctuation may be the cause of poor glucose metabolism as well as one of its effects. Fatty acids (FAs) affect cell membrane fluidity and permeability, insulin receptor binding and signaling, and the translocation of glucose transporters. Therefore, it is suggested that FAs might play a crucial part in the emergence of IR and T2DM. The cu
... Show MoreWe can summarize the main risk factors for type 2 diabetes mellitus (T2DM) by looking at our nutrition, age, and lifestyle. β-cell dysfunction and insulin resistance (IR) are outcomes of the pathophysiology of type 2 diabetes. As an indirect result of IR on important metabolic enzymes, lipid and lipoprotein abnormalities are also a factor in T2DM patients. Recent research has indicated that lipid fluctuation may be the cause of poor glucose metabolism as well as one of its effects. Fatty acids (FAs) affect cell membrane fluidity and permeability, insulin receptor binding and signaling, and the translocation of glucose transporters. Therefore, it is suggested that FAs might play a crucial part in the emergence of IR and T2DM. The cu
... Show MoreWe can summarize the main risk factors for type 2 diabetes mellitus (T2DM) by looking at our nutrition, age, and lifestyle. β-cell dysfunction and insulin resistance (IR) are outcomes of the pathophysiology of type 2 diabetes. As an indirect result of IR on important metabolic enzymes, lipid and lipoprotein abnormalities are also a factor in T2DM patients. Recent research has indicated that lipid fluctuation may be the cause of poor glucose metabolism as well as one of its effects. Fatty acids (FAs) affect cell membrane fluidity and permeability, insulin receptor binding and signaling, and the translocation of glucose transporters. Therefore, it is suggested that FAs might play a crucial part in the emergence of IR and T2DM.
Aim of the study is to find any correlation between obesity (insulin resistance) and type I diabetes in children. Obesity and diabetes mellitus are the common health problems, and obesity is common cause of the insulin resistance. The results revealed marked increased in glucose, insulin, HbAlc and insulin resistance in obese diabetic type I patients comparing to control group they were obese and non-obese found to be within normal values for glucose, insulin, FIbAlc , and insulin resistance.
Diabetes mellitus caused by insulin resistance is prompted by obesity. Neuropeptide Nesfatin-1 was identified in several organs, including the central nervous system and pancreatic islet cells. Nesfatin-1 peptide appears to be involved in hypothalamic circuits that energy homeostasis and control food intake. Adiponectin is a plasma collagen-like protein produced by adipocytes that have been linked to the development of insulin resistance (IR), diabetes mellitus type 2 (DMT2), and cardiovascular disease (CVD). Resistin was first identified as an adipose tissue–specific hormone that was linked to obesity and diabetes. The aim of this study was to estimate the relationship between human serum nesfatin-1, adiponect
... Show MoreAbstract The percent study aimed to determination the association between infant feeding practices and Insulin-Dependent Diabetes Mellitus (IDDM). The study was conducted at (he National Center of Diabetes in Baghdad City the Capital of Iraq throughout the period of January 2001 to January 2002. The sample was comprised of (200) mother of Insulin-Dependent Diabetes Mellitus (IDDM) of children under age of 12 years old. Data was collected through the use of a questionnaire that constructed by researcher and which were developed for the purpose of the present study. Reliability of the instruments was dete