Thin films of zinc selenide ZnSe have been prepared by using thermal evaporation method in vacuum with different thickness (1000 – 4000) Ao and a deposited on glass substrate and studying some electrical properties including the determination of A.C conductivity and real, imaginary parts of dielectric constant and tangent of loss angle. The result shows that increasing value of A.C conductivity with increasing thickness and temperature, and increasing capacitance value with increasing the temperature and decrease with increasing frequency . Real and imaginary parts of dielectric constant and tangent of loss angle decrease with increasing frequency
Copper oxide thin films were deposited on glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The thickness of the thin films was around 0.43?m.Copper oxide thin films were annealed in air at (200, 300 and 400°C for 45min.The film structure properties were characterized by x-ray diffraction (XRD). XRD patterns indicated the presence of polycrystalline CuO. The average grain size is calculated from the X-rays pattern, it is found that the grain size increased with increasing annealing temperature. Optical transmitter microscope (OTM) and atomic force microscope (AFM) was also used. Direct band gap values of 2.2 eV for an annealed sample and (2, 1.5, 1.4) eV at 200, 300,400oC respect
... Show MoreThe optical energy gap(Eopt) and the width of the tails of localized states in the band gap (?E) for Se:2%Sb thin films prepared by thermal co-evaporation method as a function of annealing temperature are studied in the photon energy range ( 1 to 5.4)eV.Se2%Sb film was found to be indirect transition with energy gap of (1.973,2.077, 2.096, 2.17) eV at annealing temperature (295,370,445,520)K respectively. The Eopt and ?E of Se:2%Sb films as a function of annealing temperature showed an increase in Eopt and a decrease in ?E with increasing the annealing temperature. This behavior may be related to structural defects and dangling bonds.
Alloys of Bi2[Te1-x Sex]3 were prepared by melting technique with different values of Se percentage (x=0,0.1,0.3,0.5,0.7,0.9 and 1). Thin films of these alloys were prepared by using thermal evaporation technique under vacuum of 10-5 Torr on glass substrates, deposited at room temperature with a deposition rate (12nm/min) and a constant thickness (450±30 nm). The concentrations of the initial elements Bi, Te and Se in the Bi2 [Te1-x Sex]3 alloys with different values of Se percentage (x), were determined by XRF,The morphological and structural properties were determined by AFM and XRD techniques. AFM images of Bi2[Te1-x Sex]3 thin films show that the average diameter and the average surface roughness inc
... Show MoreYtterbium-doped (Y2O3), (Sc2O3) and (YAG) crystals are very important for high-power thindisk lasers. These lasers have shown their ability to operate quasi-three-level materials with high
efficiency as well as high thermal conductivity ratio for crystalline hosts. All these reasons have
required studying this type of laser. In the present work, the analytical solution was found for the
equation of laser output power, pumping threshold power, and efficiency of a quasi-three-level
thin disk laser. The numerical solution of these equations was also found through the Matlab
program at the fundamental transverse mode, at a temperature of 299K0
and with high pumping
capabilities in order to know the e
This research deals with the study of top soil electrical conductive regions located within Baghdad City. The research included measuring the dissolved soil material extraction Electrical Conductivity (EC) with an aqueous solution for the top (0-30 cm) soil layer of the study area. As the electrical conductivity values increase by increasing the amount of dissolved salts in principle, we can consider that the aim of this research is to predict the amount and distribution of (soil contamination with salts) which is represented by the (Salt Index), this factor calculated for each soil representative sample taken from the region with a depth of (30 cm). Laboratory (EC) test values measured by the use of solutions (EC) digital meter for the ex
... Show MoreHeterocyclic polymers / silica nanocomposite one of important materials because of excellent properties such as thermal , electrical , and mechanical properties , so that hybrid nanomaterial are widely used in many fields, in this paper nanocomposite had prepared by modification of silica nanoparticals by using acrylic acid and functionalized the surface of nanoparticles, and using free Radical polymerization by AIBN as initiators and anhydrous toluene as solvent to polymerize functionalize silica nanoparticles with heterocyclic monomers to prepare heterocylic polymers / silica nanocomposite and study electrical conductivity , The nanocomposite which had prepared characterized by many analysis technique to study thermal properties such
... Show More