Concrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analysis (FEA) using ABAQUS software was developed to examine pavement behavior under repeated loading. The results revealed that at 90 days, the SF1% mix exhibited a 9.1% improved compressive strength and CF1% mix a 7.3% improved strength over the control mix. The SF1% mix increased flexural strength by 72.5% and the CF1% mix by 48.6%. Additionally, splitting tensile strength increased by 70% for the SF1% and 45.5% for the CF1%. The hybrid mixes improved compressive strength by 7.6%-8.5%, flexural strength by 59.7%-70.2%, and splitting tensile strength by 56%-67.8%. The finite element modeling showed that the control mix was displaced 15 mm under repeated loading, while the SF1% reduced displacement by 35% and the hybrid mixes by 30%. These findings indicated that SF1% exhibited the best mechanical properties. However, fiber reinforcement, whether used single or in hybrid combinations, improves concrete pavement mechanical performance and loading behavior, offering a promising way to infrastructure durability and service life.
Soil pH is one of the main factors to consider before undertaking any agricultural operation. Methods for measuring soil pH vary, but all traditional methods require time, effort, and expertise. This study aimed to determine, predict, and map the spatial distribution of soil pH based on data taken from 50 sites using the Kriging geostatistical tool in ArcGIS as a first step. In the second step, the Support Vector Machines (SVM) machine learning algorithm was used to predict the soil pH based on the CIE-L*a*b values taken from the optical fiber sensor. The standard deviation of the soil pH values was 0.42, which indicates a more reliable measurement and the data distribution is normal.
In this study, the harvest of maize silage with the cross double row sowing method were tested with a single row disc silage machine in two different PTO applications (540 and 540E min-1) and at two different working speeds v1, v2 (1.8 and 2.5 km h-1). The possibilities of harvesting with a single row machine were revealed, and performance characteristics such as hourly fuel consumption, field-product fuel consumption and PTO power consumption were determined in the trials. The best results in terms of hourly fuel consumption and PTO power consumption were determined in the 540E PTO application and V1 working speed. When the fuel consumption of the field-product is evaluated, it is obtained with V2 working speed and 540E PTO application. As
... Show MoreDue to the great losses caused by weeds to the crop, it is necessary to continue testing new herbicides that may be more efficient than the herbicides used that can reduce competition between weeds and crops, Therefore, a field experiment was carried out in the experimental field of the Department of Field Crops, College of Agricultural Engineering Sciences, University of Baghdad (Al-Jadriya) during the winter season of 2021-22 in order to evaluate the efficiency of the herbicide H-199 and compare it with some herbicides used in controlling companion weed to three cultivars of wheat and its effect in the yield and its components. The experiment was applied according to the randomized complete block design with split-plot arrangement
... Show MoreElectrical Discharge Machining (EDM) is a widespread Nontraditional Machining (NTM) processes for manufacturing of a complicated geometry or very hard metals parts that are difficult to machine by traditional machining operations. Electrical discharge machining is a material removal (MR) process characterized by using electrical discharge erosion. This paper discusses the optimal parameters of EDM on high-speed steel (HSS) AISI M2 as a workpiece using copper and brass as an electrode. The input parameters used for experimental work are current (10, 24 and 42 A), pulse on time (100, 150 and 200 µs), and pulse off time (4, 12 and 25 µs) that have effect on the material removal rate (MRR), electrode wear rate (EWR) and wear ratio (WR). A
... Show MoreThe UN plans to achieve several development objectives by 2030. These objectives address global warming, a major issue. This method aims to improve sustainable accounting performance (AP). In this circumstance, AI is being applied in various fields, notably in economic, social, and environmental (ESE) domains. This research investigates how sustainable development (SD) influences AI methodologies and AP improvement. The research examined a sample of Iraqi banks listed on the Iraq Stock Exchange from 2014 to 2022. AI was measured by ATM and POS prevalence. A three-dimensional approach examined economic, social, and environmental (ESE) sustainability. Meanwhile, the performance of sustainable accounting was measured through the return on asse
... Show MoreRestoration of degraded lands by adoption of recommended conservation management practices can rehabilitate watersheds and lead to improving soil and water quality. The objective was to evaluate the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), agroforestry buffers (ABs), landscape positions, and distance from tree base for AB treatment on soil quality compared with row crop (RC) (corn [
Enhancing fatigue resistance in asphalt binders and mixtures is crucial for prolonging pavement lifespan and improving road performance. Recent advancements in nanotechnology have introduced various nanomaterials such as alumina (NA), carbon nanotubes (CNTs), and silica (NS) as potential asphalt modifiers. These materials possess unique properties that address challenges related to asphalt fatigue. However, their effectiveness depends on proper dispersion and mixing techniques. This review examines the mixing methods used for each nanomaterial to ensure uniform distribution within the asphalt matrix and maximize performance benefits. Recent research findings are synthesized to elucidate how these nanomaterials and their mixing proce
... Show MoreTests were performed on Marshall samples and were implemented for permanent deformation and resilient modulus (Mr) under indirect tensile repeated loading (ITRL), with constant stress level. Two types of liquid asphalt (cutback and emulsion) were tried as recycling agents, aged materials that were reclaimed from field (100% RAP), samples were prepared from the aged mixture, and two types of liquid asphalt (cutback and emulsion) with a weight content of 0.5% were utilized to prepare a recycled mixture. A group of twelve samples was prepared for each mixture; six samples were tested directly for ITRL test (three samples at 25˚C and three samples at 40˚C), an average value for ITRL for every three samples was calculated (
... Show More