Concrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analysis (FEA) using ABAQUS software was developed to examine pavement behavior under repeated loading. The results revealed that at 90 days, the SF1% mix exhibited a 9.1% improved compressive strength and CF1% mix a 7.3% improved strength over the control mix. The SF1% mix increased flexural strength by 72.5% and the CF1% mix by 48.6%. Additionally, splitting tensile strength increased by 70% for the SF1% and 45.5% for the CF1%. The hybrid mixes improved compressive strength by 7.6%-8.5%, flexural strength by 59.7%-70.2%, and splitting tensile strength by 56%-67.8%. The finite element modeling showed that the control mix was displaced 15 mm under repeated loading, while the SF1% reduced displacement by 35% and the hybrid mixes by 30%. These findings indicated that SF1% exhibited the best mechanical properties. However, fiber reinforcement, whether used single or in hybrid combinations, improves concrete pavement mechanical performance and loading behavior, offering a promising way to infrastructure durability and service life.
Two of the main advantages of segmental construction are economics, as well as the rapid construction technique. One of the forms of segmental construction, for structural elements, is the segmental beams that built-in short sections, which referred to segments. This research aims to exhibit a new technique for the fabrication of short-span segmental beams from wedge-shaped concrete segments and carbon fiber reinforced polymers (CFRP) in laminate form. The experimental campaign included eight short-span segmental beams. In this study, two selected parameters were considered. These parameters are; the number of layers of CFRP laminates and the adhesive material that used to bond segments to each other, forming short-span segmental be
... Show MoreSolar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both so
... Show MoreSolar photovoltaic (PV) system has emerged as one of the most promising technology to generate clean energy. In this work, the performance of monocrystalline silicon photovoltaic module is studied through observing the effect of necessary parameters: solar irradiation and ambient temperature. The single diode model with series resistors is selected to find the characterization of current-voltage (I-V) and power-voltage (P-V) curves by determining the values of five parameters ( ). This model shows a high accuracy in modeling the solar PV module under various weather conditions. The modeling is simulated via using MATLAB/Simulink software. The performance of the selected solar PV module is tested experimentally for differ
... Show MoreAutonomous systems are these systems which power themselves from the available ambient energies in addition to their duties. In the next few years, autonomous systems will pervade society and they will find their ways into different applications related to health, security, comfort and entertainment. Piezoelectric harvesters are possible energy converters which can be used to convert the available ambient vibration energy into electrical energy. In this contribution, an energy harvesting cantilever array with magnetic tuning including three piezoelectric bimorphs is investigated theoretically and experimentally. Other than harvester designs proposed before, this array is easy to manufacture and insensitive to manufacturi
... Show MoreMany studies have been published to address the growing issues in wireless communication systems. Space-Time Block Coding (STBC) is an effective and practical MIMO-OFDM application that can address such issues. It is a powerful tool for increasing wireless performance by coding data symbols and transmitting diversity using several antennas. The most significant challenge is to recover the transmitted signal through a time-varying multipath fading channel and obtain a precise channel estimation to recover the transmitted information symbols. This work considers different pilot patterns for channel estimation and equalization in MIMO-OFDM systems. The pilot patterns fall under two general types: comb and block types, with
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreIn this paper, introduce a proposed multi-level pseudo-random sequence generator (MLPN). Characterized by its flexibility in changing generated pseudo noise (PN) sequence according to a key between transmitter and receiver. Also, introduce derive of the mathematical model for the MLPN generator. This method is called multi-level because it uses more than PN sequence arranged as levels to generation the pseudo-random sequence. This work introduces a graphical method describe the data processing through MLPN generation. This MLPN sequence can be changed according to changing the key between transmitter and receiver. The MLPN provides different pseudo-random sequence lengths. This work provides the ability to implement MLPN practically
... Show More