Preferred Language
Articles
/
mxf4UZEBVTCNdQwC6pT5
Machine Learning-based Information Security Model for Botnet Detection
...Show More Authors

Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet detection for information security. For effectual recognition of botnets, the proposed model involves data pre-processing at the initial stage. Besides, the model is utilized for the identification and classification of botnets that exist in the network. In order to optimally adjust the SVM parameters, the DFA is utilized and consequently resulting in enhanced outcomes. The presented model has the ability in accomplishing improved botnet detection performance. A wide-ranging experimental analysis is performed and the results are inspected under several aspects. The experimental results indicated the efficiency of our model over existing methods.

Scopus Crossref
View Publication
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Arabic Sentiment Analysis (ASA) Using Deep Learning Approach
...Show More Authors

Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l

... Show More
View Publication Preview PDF
Crossref (23)
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Utilizing the ATM technology in e-distance learning
...Show More Authors

<p>There is an Increasing demand for the education in the field of E-learning specially the higher education, and to keep contiuity between the user and the course director in any place and time. This research presents a proposed and simulation multimedia network design for distance learning utilizing ATM technique. The propsed framework determines the principle of ATM technology and shows how multimedia can be integrated within E- learning conteext. The first part of this research presents a theoretical design for the Electricity Department, university of technology. The purpose is to illustrate the usage of the ATM and Multimedia in distance learning process. In addition, this research composes two entities: Software entity

... Show More
View Publication
Scopus (9)
Crossref (1)
Scopus Crossref
Publication Date
Fri Mar 18 2022
Journal Name
Aro-the Scientific Journal Of Koya University
Detecting Deepfakes with Deep Learning and Gabor Filters
...Show More Authors

The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue

... Show More
View Publication
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Detection of Cholesterol in Suaeda Baccata (Chenopodiaceae)
...Show More Authors

This study detects the presence of cholesterol in an Iraqi plant named Suaeda baccata Forsk of the family Chenopodiacae, wildly and widely grown in Iraq. The absence of any publication concerning the sterol content of this Suaeda specie, and the industrial importance of cholesterol depending on its role as a precursor in the synthesis of some hormones, like progesterone, acquired this study its value. The investigations revealed the presence of cholesterol that was proved by TLC together with the standard compound cholesterol, and anisaldehyde spray reagent using three different solvent systems, then authenticated by HPLC, in which the reten

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 22 2021
Journal Name
Samarra Journal Of Pure And Applied Science
Toward Constructing a Balanced Intrusion Detection Dataset
...Show More Authors

Several Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff

... Show More
View Publication
Crossref (6)
Crossref
Publication Date
Sun Sep 07 2008
Journal Name
Baghdad Science Journal
Detection of Pseudomonas aeruginosa in Hospital Contamination
...Show More Authors

The Present investigation includes the isolation and identification of Pseudomonas aeruginosa for different cases of hospital contamination from 1/ 6/2003 to 30/9/2004, the identification of bacteria depended on morphological , cultural and biochemical characters, 37 of isolates were diagnosed from 70 smears from wounds and burns beside 25 isolates were identified from 200 smears taken from operation theater and hospital wards including the floors , walls , sources of light and operation equipment the sensitivity of all isolates to antibiotic were done , which exhibited complete sensitivity to Ciprofloxacin , Ceftraixon, Tobromycin and Gentamysin ,while they were complete resist to Amoxcillin , Tetracyclin , Nitrofurantion , Clindamycin C

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 02 2025
Journal Name
Engineering, Technology &amp; Applied Science Research
Automated Glaucoma Detection Techniques: A Literature Review
...Show More Authors

Significant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Dec 07 2021
Journal Name
2021 14th International Conference On Developments In Esystems Engineering (dese)
Object Detection and Distance Measurement Using AI
...Show More Authors

View Publication
Scopus (29)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Sat Feb 22 2020
Journal Name
Journal Of Economics And Administrative Sciences
The impact of time management on the performance of the functional business: Survey study at Al Salam General Company for Communications and Information Technology
...Show More Authors

The aim of the research is to know the level of time management application and its impact on the performance of the job, a survey search in the general company for communication and information technology and provide recommendations that help employees to optimize the use of time and improve performance, which is an important element in controlling the various functions of the company. In order to achieve the objectives of the research, the questionnaire was based on two main variables and distributed to a random sample of (44) employees in the company out of (308) employees, thus the proportion of the sample (14%). After collecting the samples from the sample, there are (6) incomplete forms that have been retri

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Oct 28 2022
Journal Name
Political Sciences Journal
The impact of the US military variable in reality Security in the Arab Gulf region after 2003
...Show More Authors

The military presence in the Gulf region after the British withdrawal from it in 1971 was one of the most important pillars of the American strategy to climb the ladder of global leadership, as the geostrategic features that the region enjoyed provided factors of controlling energy sources and global trade routes. The United States of America guarantees Western Europe and Japan the process of access to energy sources and the exclusion of its opponents from the region, especially the Soviet Union, and the growing American military presence in the Gulf after the invasion of Iraq in 2003. On the other hand, the region experiences many contradictions, some of which threaten its security, such as the exacerbation of disputes between its count

... Show More
View Publication Preview PDF
Crossref