Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet detection for information security. For effectual recognition of botnets, the proposed model involves data pre-processing at the initial stage. Besides, the model is utilized for the identification and classification of botnets that exist in the network. In order to optimally adjust the SVM parameters, the DFA is utilized and consequently resulting in enhanced outcomes. The presented model has the ability in accomplishing improved botnet detection performance. A wide-ranging experimental analysis is performed and the results are inspected under several aspects. The experimental results indicated the efficiency of our model over existing methods.
The current research aims to identify the effect of the program to develop the skill of friendship among kindergarten children, as well as the scope of the impact of the program on the sample. To achieve the objectives of the research, the researcher hypothesizes there is no significant difference between the average scores of the sample members on the friendship skill scale for the dimensional scale according to the experimental and control group. The research sample consisted of (60) girl and boy with age ranges (4-6) who were randomly selected from the Kindergarten Unity at Baghdad city/ Rusafa 1. The children were distributed into an experimental and control group, each group consists of (30) girl and boy. The two groups were chosen
... Show Moreهدفت الدراسة الى الاهتمام واستغلال ماهو جديد من تقنيات واجهزة حديثة في تعليم السباحة الحرة عن طريق توجيه الاطفال على تطوير مداركهم واستيعابهم بالتطور التكنولوجي الذي يتناوله العالم ،قامت الباحثتان باعداد منهج تعليمي باستخدام نظارة الواقع الافتراضي وذالك بتوفير بيئة مشابهة للبيئة الحقيقية تحاكي مدارك عقول الاطفال في عالم افتراضي لتتكون صورة كاملة عن مهارات السباحة الحرة ،ومن هنا اتت المشكلة نتيجة تعل
... Show MoreThese days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that. The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the proce
... Show MoreSAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and LHSV 0.5-2h-1. The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1. Meanwhile, the same catalyst was used to improve base oil spec
... Show MoreThis study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators
The issue of the research lies in the non-representation of the models developed for the communication process in the interaction and networking processes through social media, as the research sought to build a network model of communication according to the specific data and features of social media platforms in order to reach a special generalization to understand how the process of networking operates in cyberspace.
The researcher followed the analytical survey approach as she described the communication models outwardly in order to be able to build a networked communication model that represents the flow of post-reactive communication. Therefore, it has been named "Nebula - Sadeem" after the concept of post-space and cosmic g
... Show More