Preferred Language
Articles
/
mxell5ABVTCNdQwCrY6F
High-accuracy models for iris recognition with merging features
...Show More Authors

Due to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual information (MI), along with analysis of variance (ANOVA) for feature selection. Two iris classification systems were developed: one using LDA as an input for the OneR machine learning algorithm and another innovative hybrid model based on a One Dimensional Convolutional Neural Network (HM-1DCNN). The MMU database was employed, achieving a performance measure of 94.387% accuracy for the OneR model. Additionally, the HM-1DCNN model achieved 99.9% accuracy by integrating LDA with MI and ANOVA. Comparisons with previous studies show that the HM-1DCNN model performs exceptionally well, with at least 1.69% higher accuracy and lower processing time.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
Ssrn Electronic Journal
Increasing Safety in Highways Transit Systems by Using Ethical Artificial Intelligence AI
...Show More Authors

“Smart city” projects have become fully developed and are actively using video analytics. Our study looks at how video analytics from surveillance cameras can help manage urban areas, making the environment safer and residents happier. Every year hundreds of people fall on subway and railway lines. The causes of these accidents include crowding, fights, sudden health problems such as dizziness or heart attacks, as well as those who intentionally jump in front of trains. These accidents may not cause deaths, but they cause delays for tens of thousands of passengers. Sometimes passers-by have time to react to the event and try to prevent it, or contact station personnel, but computers can react faster in such situations by using ethical

... Show More
View Publication
Crossref
Publication Date
Sun May 11 2025
Journal Name
Iraqi Statisticians Journal
Semi-Parametric Fuzzy Quantile Regression Model EstimationBased on Proposed Metric via Jensen–Shannon Distance
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Wed Jul 09 2025
Journal Name
International Journal Of Data And Network Science
Multi-objective of wind-driven optimization as feature selection and clustering to enhance text clustering
...Show More Authors

Text Clustering consists of grouping objects of similar categories. The initial centroids influence operation of the system with the potential to become trapped in local optima. The second issue pertains to the impact of a huge number of features on the determination of optimal initial centroids. The problem of dimensionality may be reduced by feature selection. Therefore, Wind Driven Optimization (WDO) was employed as Feature Selection to reduce the unimportant words from the text. In addition, the current study has integrated a novel clustering optimization technique called the WDO (Wasp Swarm Optimization) to effectively determine the most suitable initial centroids. The result showed the new meta-heuristic which is WDO was employed as t

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Minar Congress 6
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Modeling Jar Test Results Using Gene Expression to Determine the Optimal Alum Dose in Drinking Water Treatment Plants
...Show More Authors

Coagulation is the most important process in drinking water treatment. Alum coagulant increases the aluminum residuals, which have been linked in many studies to Alzheimer's disease. Therefore, it is very important to use it with the very optimal dose. In this paper, four sets of experiments were done to determine the relationship between raw water characteristics: turbidity, pH, alkalinity, temperature, and optimum doses of alum [   .14 O] to form a mathematical equation that could replace the need for jar test experiments. The experiments were performed under different conditions and under different seasonal circumstances. The optimal dose in every set was determined, and used to build a gene expression model (GEP). The models were co

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Jul 01 2024
Journal Name
Journal Of Engineering
Efficient Intrusion Detection Through the Fusion of AI Algorithms and Feature Selection Methods
...Show More Authors

With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Apr 16 2025
Journal Name
International Journal Of Engineering Pedagogy (ijep)
Utilizing Machine Learning Techniques to Predict University Students' Digital Competence
...Show More Authors

Given the importance of possessing the digital competence (DC) required by the technological age, whether for teachers or students and even communities and governments, educational institutions in most countries have sought to benefit from modern technologies brought about by the technological revolution in developing learning and teaching and using modern technologies in providing educational services to learners. Since university students will have the doors to work opened in all fields, the research aims to know their level of DC in artificial intelligence (AI) applications and systems utilizing machine learning (ML) techniques. The descriptive approach was used, as the research community consisted of students from the University

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Thu Sep 29 2022
Journal Name
Al–bahith Al–a'alami
Factors Affecting the Professional Performance of Editors of The News in Iraqi Satellite Channels - A research drawn from a Master Degree thesis
...Show More Authors

Information pollution is regarded as a big problem facing journalists working in the editing section, whereby journalistic materials face such pollution through their way across the editing pyramid. This research is an attempt to define the concept of journalistic information pollution, and what are the causes and sources of this pollution. The research applied the descriptive research method to achieve its objectives. A questionnaire was used to collect data. The findings indicate that journalists are aware of the existence of information pollution in journalism, and this pollution has its causes and resources.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jul 09 2025
Journal Name
Al–bahith Al–a'alami
Information Pollution in Iraqi Journalism…Study in Causes and Sources - A research drawn from a Master Degree thesis
...Show More Authors

Information pollution is regarded as a big problem facing journalists working in the editing section, whereby journalistic materials face such pollution through their way across the editing pyramid. This research is an attempt to define the concept of journalistic information pollution, and what are the causes and sources of this pollution. The research applied the descriptive research method to achieve its objectives. A questionnaire was used to collect data. The findings indicate that journalists are aware of the existence of information pollution in journalism, and this pollution has its causes and resources.

View Publication Preview PDF
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF