Preferred Language
Articles
/
mxell5ABVTCNdQwCrY6F
High-accuracy models for iris recognition with merging features
...Show More Authors

Due to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual information (MI), along with analysis of variance (ANOVA) for feature selection. Two iris classification systems were developed: one using LDA as an input for the OneR machine learning algorithm and another innovative hybrid model based on a One Dimensional Convolutional Neural Network (HM-1DCNN). The MMU database was employed, achieving a performance measure of 94.387% accuracy for the OneR model. Additionally, the HM-1DCNN model achieved 99.9% accuracy by integrating LDA with MI and ANOVA. Comparisons with previous studies show that the HM-1DCNN model performs exceptionally well, with at least 1.69% higher accuracy and lower processing time.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Sun Jun 05 2022
Journal Name
Sport Tk-revista Euroamericana De Ciencias Del Deporte
Visual spatial attention and its impact on the accuracy of the diagonal spike in volleyball
...Show More Authors

The primary aim of this research was to study visual spatial attention and its impact on the accuracy of the diagonal spike in volleyball. A total of 20 volleyball players of Baghdad participated in this study. The sample was homogeneous in terms of height, weight and age of the players. The tests used in the present study were: 1) Visual Spatial Attention Test. 2) Volleyball Spike Test. Based on the findings of the study, the researcher concluded that visual spatial attention has a significant impact on the accuracy of the diagonal spike in volleyball.

View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science (ijeecs)
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
Crossref (4)
Crossref
Publication Date
Tue May 27 2025
Journal Name
Scientific Journal Of Sport And Performance
impact of mental games on improving shooting accuracy among young basketball players in Iraqi clubs
...Show More Authors

This study investigates the effectiveness of mental games in enhancing shooting accuracy among young basketball players. Initially, baseline shooting accuracy was assessed through tests conducted prior to a three-week intervention involving mental games. A follow-up test revealed a significant improvement in participants' shooting accuracy following the intervention. Given the noticeable differences in the new shooting scores compared to the initial assessments, a second set of pre-intervention tests was conducted. These tests reaffirmed the significant enhancement in shooting accuracy, substantiating the hypothesis that mental games positively affect performance. The findings highlight the importance of these intervention programs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 27 2022
Journal Name
Sport Tk-revista Euroamericana De Ciencias Del Deporte
Effect of resistance training on the biomechanics and accuracy of serve receiving skills in volleyball
...Show More Authors

This study aimed to identify the effect of resistance training on the biomechanics and accuracy of serve receiving skills in volleyball. The research community was composed of 26 young volleyball players of Baghdad volleyball clubs. A total of 4 players were selected for the preliminary experiment, while 14 participants were recruited as the main sample for the study. In the present study, a set of resistance exercises were designed by the researchers for the volleyball players of the sample. Exercises were performed by the sample participants during the course of study. The biomechanical variables considered in the present study were: Preparation moment (shoulder joint angle, hip angle, knee joint angle), moment of pr

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Robotics And Control (jrc)
Automated Stand-alone Surgical Safety Evaluation for Laparoscopic Cholecystectomy (LC) using Convolutional Neural Network and Constrained Local Models (CNN-CLM)
...Show More Authors

In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like iden

... Show More
View Publication
Crossref (1)
Scopus Crossref
Publication Date
Fri Feb 28 2025
Journal Name
Energies
Synergizing Machine Learning and Physical Models for Enhanced Gas Production Forecasting: A Comparative Study of Short- and Long-Term Feasibility
...Show More Authors

Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Nov 03 2022
Journal Name
Sensors
A Novel Application of Deep Learning (Convolutional Neural Network) for Traumatic Spinal Cord Injury Classification Using Automatically Learned Features of EMG Signal
...Show More Authors

In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi

... Show More
View Publication
Scopus (8)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Research Journal Of Pharmaceutical,biological And Chemical Sciense
correlation of serum tumor necrosis factor alpha and high sensitive c-reactive protein with clinical periodontal parameters in osteoarthritis patients
...Show More Authors

Publication Date
Sat Sep 15 2018
Journal Name
Journal Of Baghdad College Of Dentistry
Serum Tumor Necrosis Factor Alpha and High Sensitive C-Reactive protein as Biomarkers in Periodontitis in Iraqi Patients with Osteoarthritis
...Show More Authors

Background: Periodontitis (PD) is well-known chronic disease affecting the periodontal ligament and alveolar bone, Osteoarthritis (OA) is a chronic joint disease with compound reasons characterized by synovial inflammation, subchondral bone remodeling, also the formation of osteophytes, that cause cartilage degradation. Chronic periodontitis and osteoarthritis are considered widely prevalent diseases and related to tissue destruction due to chronic inflammation in general health and oral health. The aim of this study is todetermine the association of chronic periodontitis and osteoarthritits in patients by analysing tumor necrosis factor alpha TNFα and high sensitive c-reactive protein (hsCRP) in the serum. Materials and Method: A tot

... Show More
View Publication Preview PDF
Crossref (1)
Crossref