Due to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual information (MI), along with analysis of variance (ANOVA) for feature selection. Two iris classification systems were developed: one using LDA as an input for the OneR machine learning algorithm and another innovative hybrid model based on a One Dimensional Convolutional Neural Network (HM-1DCNN). The MMU database was employed, achieving a performance measure of 94.387% accuracy for the OneR model. Additionally, the HM-1DCNN model achieved 99.9% accuracy by integrating LDA with MI and ANOVA. Comparisons with previous studies show that the HM-1DCNN model performs exceptionally well, with at least 1.69% higher accuracy and lower processing time.
Accurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles
... Show MoreObjective: A descriptive design, using the methodological approach, is carried throughout the present
study from April 1st 2012 to May 20th 2013 to construct the school physical environment standardized
features tool.
Methodology: An instrument of (141) item is constructed for the purpose of the study. A purposive
sample of (44) school; (22) public and (22) private ones is selected. Content Validity of the instrument is
determined through the use of panel of (11) expert who are specialists in Community Health Nursing and
Community Medicine. Internal consistency reliability, using the split-half technique, is employed through
the computation of Cronbach alpha correlation coefficient of (0.93) for internal scale. Data
1.Chapter I (systematic framework) which includes: the research problem and the importance of the research, the need for it, the goals of the research, the temporal &spatial boundaries, determine the terms and defined procedurally.2.Chapter II - the theoretical framework: It consists of three sections are:•The first topic:- the concept of references and experimentation in the theater. •The second topic:- the director of academic and experimentation in Iraq. Two paragraphs in this section came after the introduction, in first paragraph to talk about the Iraqi theater academic and experimentation, and in the second paragraph the researcher spoke about the academic director of the Iraqi and experimentation. 3.Chapter III - Actions -
... Show MoreThe fuzzy assignment models (FAMs) have been explored by various literature to access classical values, which are more precise in our real-life accomplishment. The novelty of this paper contributed positively to a unique application of pentagonal fuzzy numbers for the evaluation of FAMs. The new method namely Pascal's triangle graded mean (PT-GM) has presented a new algorithm in accessing the critical path to solve the assignment problems (AP) based on the fuzzy objective function of minimising total cost. The results obtained have been compared to the existing methods such as, the centroid formula (CF) and centroid formula integration (CFI). It has been demonstrated that operational efficiency of this conducted method is exquisitely develo
... Show MoreThe experimental proton resonance data for the reaction P+48Ti have been used to calculate and evaluate the level density by employed the Gaussian Orthogonal Ensemble, GOE version of RMT, Constant Temperature, CT and Back Shifted Fermi Gas, BSFG models at certain spin-parity and at different proton energies. The results of GOE model are found in agreement with other, while the level density calculated using the BSFG Model showed less values with spin dependence more than parity, due the limitation in the parameters (level density parameter, a, Energy shift parameter, E1and spin cut off parameter, σc). Also, in the CT Model the level density results depend mainly on two parameters (T and ground state back shift energy, E0), which are app
... Show MoreSoil improvement has developed as a realistic solution for enhancing soil properties so that structures can be constructed to meet project engineering requirements due to the limited availability of construction land in urban centers. The jet grouting method for soil improvement is a novel geotechnical alternative for problematic soils for which conventional foundation designs cannot provide acceptable and lasting solutions. The paper's methodology was based on constructing pile models using a low-pressure injection laboratory setup built and made locally to simulate the operation of field equipment. The setup design was based on previous research that systematically conducted unconfined compression testing (U.C.Ts.). Th
... Show MoreThis research dealt with the analysis of murder crime data in Iraq in its temporal and spatial dimensions, then it focused on building a new model with an algorithm that combines the characteristics associated with time and spatial series so that this model can predict more accurately than other models by comparing them with this model, which we called the Combined Regression model (CR), which consists of merging two models, the time series regression model with the spatial regression model, and making them one model that can analyze data in its temporal and spatial dimensions. Several models were used for comparison with the integrated model, namely Multiple Linear Regression (MLR), Decision Tree Regression (DTR), Random Forest Reg
... Show More