Due to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual information (MI), along with analysis of variance (ANOVA) for feature selection. Two iris classification systems were developed: one using LDA as an input for the OneR machine learning algorithm and another innovative hybrid model based on a One Dimensional Convolutional Neural Network (HM-1DCNN). The MMU database was employed, achieving a performance measure of 94.387% accuracy for the OneR model. Additionally, the HM-1DCNN model achieved 99.9% accuracy by integrating LDA with MI and ANOVA. Comparisons with previous studies show that the HM-1DCNN model performs exceptionally well, with at least 1.69% higher accuracy and lower processing time.
This research provides a study of the virtual museums features and characteristics and contributes to the recognition of the diversity of visual presentation methods, as the virtual museums give the act of participation and visual communication with programs at an open time, so that it would contribute to reflection, thinking and recording notes, developing the actual and innovative skills through seeing the environments. The study has been divided into two sections the first one is virtual museum techniques. The techniques were studied to reach the public and are used remotely by the services of personal computers or smart phones being virtual libraries that store images and information that was formed and built in a digital way and how
... Show MoreDiyala river is the most important tributaries in Iraq, this river suffering from pollution, therefore, this research aimed to predict organic pollutants that represented by biological oxygen demand BOD, and inorganic pollutants that represented by total dissolved solids TDS for Diyala river in Iraq, the data used in this research were collected for the period from 2011-2016 for the last station in the river known as D17, before the river meeting Tigris river in Baghdad city. Analysis Neural Network ANN was used in order to find the mathematical models, the parameters used to predict BOD were seven parameters EC, Alk, Cl, K, TH, NO3, DO, after removing the less importance parameters. While the parameters that used to predict TDS were fourte
... Show MoreThe research took the spatial autoregressive model: SAR and spatial error model: SEM in an attempt to provide practical evidence that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial and that includes all of the spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. The spatial analysis had been applied to Iraq Household Socio-Economic Survey: IHS
... Show MoreNowadays, cloud computing has attracted the attention of large companies due to its high potential, flexibility, and profitability in providing multi-sources of hardware and software to serve the connected users. Given the scale of modern data centers and the dynamic nature of their resource provisioning, we need effective scheduling techniques to manage these resources while satisfying both the cloud providers and cloud users goals. Task scheduling in cloud computing is considered as NP-hard problem which cannot be easily solved by classical optimization methods. Thus, both heuristic and meta-heuristic techniques have been utilized to provide optimal or near-optimal solutions within an acceptable time frame for such problems. In th
... Show MoreThe subject of dumping is considering today one of the subjects in which form an obstruction arise in front of the cycle of growth for some countries , such as the study of dumping is capturing a large attention by the competent because either a big role and effect in growing the economies of nations then the subject of dumping became a field turn around its sides many measures and laws … and may be done resorting to by many states of the world to anti-dumping as approach of determent weapon delimit the impact of dumping and gives the national agriculture sector the opportunity for rising and growing so this section of international economics is capturing a special importance and represent in same time an important
... Show MoreAccurate prediction of river water quality parameters is essential for environmental protection and sustainable agricultural resource management. This study presents a novel framework for estimating potential salinity in river water in arid and semi‐arid regions by integrating a kernel extreme learning machine (KELM) with a boosted salp swarm algorithm based on differential evolution (KELM‐BSSADE). A dataset of 336 samples, including bicarbonate, calcium, pH, total dissolved solids and sodium adsorption ratio, was collected from the Idenak station in Iran and was used for the modelling. Results demonstrated that KELM‐BSSADE outperformed models such as deep random vector funct
Iraqi bentonite is used as main material for preparing ceramic samples with the additions of alumina and magnesia. X-ray diffractions analyses were carried out for the raw material at room temperature. The sequence of mineral phase's transformations of the bentonite for temperatures 1000 ,1100 ,1200 and 1250 ºC reflects that it finally transformed in to mullite 39.18% and cristobalite 62.82%. Samples of different weight constituent were prepared. The effect of its constitutional change reveals through its heat treatments at 1000,1100,1200,1250and 1300ºC .The samples of additions less than 15% of alumina and magnesia could not stand up to 1300ºC while the samples of addition more than 15% are stable .That is shown by analy
... Show MoreMechanical degradation hampers the practical usage of polymers for turbulent drag reduction
application. Mechanical degradation refers to the chemical process in which the activation energy of
polymer chain scission is exceeded by mechanical action on the polymer chain, and bond rupture
occurs. When a water-soluble polymer and surfactant are mixed in water solution, the specific structures
(aggregates) are formed, in which polymer film is formed around micelle. In this work, Xanthan gum (XG) –
Sodium lauryl ether sulfate (SELS) complex formation and its effect on percentage viscosity reduction
(%VR) was studied. It was found that SELS surfactant reduced the mechanical degradation of XG much
more efficiently than th
Background: syndrome X or metabolic syndrome is a collection of multiple diseases mainly visceral obesity , hypertriglyceridemia , decrease HDL level, hypertension and elevated fasting blood glucose that lead to accelerated atherosclerosis through multiple mechanisms, one of the most important is increase inflammation of the vessels manifested by elevated high sensitivity C reactive protein (hs-CRP).Objective: The aim of the study was to assess the prevalence of elevatedhs CRP in people with metabolic syndrome and atherosclerosis complication (IHD, Cerebrovascular disease, peripheral vascular disease) and metabolic syndrome without these complication.Patients and methods:;This is a cross sectional study carried out in Diabetic referral c
... Show More