Due to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual information (MI), along with analysis of variance (ANOVA) for feature selection. Two iris classification systems were developed: one using LDA as an input for the OneR machine learning algorithm and another innovative hybrid model based on a One Dimensional Convolutional Neural Network (HM-1DCNN). The MMU database was employed, achieving a performance measure of 94.387% accuracy for the OneR model. Additionally, the HM-1DCNN model achieved 99.9% accuracy by integrating LDA with MI and ANOVA. Comparisons with previous studies show that the HM-1DCNN model performs exceptionally well, with at least 1.69% higher accuracy and lower processing time.
Effective management of advanced cancer requires systemic treatment including small molecules that target unique features of aggressive tumor cells. At the same time, tumors are heterogeneous and current evidence suggests that a subpopulation of tumor cells, called tumor initiating or cancer stem cells, are responsible for metastatic dissemination, tumor relapse and possibly drug resistance. Classical apoptotic drugs are less effective against this critical subpopulation. In the course of generating a library of open-chain epothilones, we discovered a new class of small molecule anticancer agents that has no effect on tubulin but instead kills selected cancer cell lines by harnessing reactive oxygen
Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreThe objective of the research is to uncover the effect of the strategy of Quranic verses in the collection of science and systemic intelligence for second-grade students. The research sample consisted of (48) students of second grade students in the middle of Al Rasheed Boys School of the second Karkh Directorate, Distribution in the two divisions, Division of (b) and experimental group that studied strategy of Quranic verses, and the Division (a) control group which studied the regular way, and results indicated a statistically significant differences for the experimental group students studied using the strategy Verses in systemic intelligence collection.
Abstract
The curriculum is amodern science which reflects the social philosophy and
what it needs . It searches for amothod that limits the knowledge that the
indiridual gets in the society and the sorts of the culture that suits the enrironment
in which they live. It also clears for them their history and their great in heritance.
It has a great in flunce in their mental growth ,and it teacher the students new
roles in the thin king ,and training then on what they have learned . According to
there points the problem concentrats on the mostimpotant difficulties which facer
thestudents in studing Arabic langnage text-books
In spite of the great care that the text taker but it is full of subjects and studies
w
Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreThe study aims to explore the effect of cognitive behavioral therapy on internet addiction among university students. The experimental method was used. The study population consisted of (100) university students (50 males, 50 females). The Research sample included (13) University students at Baghdad University addicted to the Internet (9 males, 4 females), divided into two groups: a control group consisting of (6) individuals (4 males, 2 females) and an experimental sample consisting of (6) individuals (4 males, 2 females). The Scale of Internet Addiction by Young (1996), which was translated and modified into the Arabic language by (Moegel and Prism, 2016), was administered to the study sample. The sample was subjected to two sess
... Show MoreAR Al-Heany BSc, PKESMD MSc., PSAANBS PhD, APAANMD MSc., DDV, FICMS., IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), 2014 - Cited by 14