Preferred Language
Articles
/
mxdYtZIBVTCNdQwCdb5k
THE COMPARISON OF THE METHODS ESTIMATING THE FRACTIONAL DIFFERENCES OF PARAMETER AND ITS DEPENDENCE ON ESTIMATION THE BEST LINEAR MODEL OF TIME SERIES IN THE ENVIRONMENTAL FIELD
...Show More Authors

Crossref
View Publication
Publication Date
Sat Oct 20 2018
Journal Name
Journal Of Economics And Administrative Sciences
The Effect of Extreme Values on Streeter-Phleps Model Parameter Estimators With Application Abstract
...Show More Authors

Abstract

   The extremes effects in parameters readings which are BOD (Biological Oxygen Demands) and DO(Dissolved Oxygen) can caused error estimating of the model’s parameters which used to determine the ratio of de oxygenation and re oxygenation of the dissolved oxygen(DO),then that will caused launch big amounts of the sewage pollution  water to the rivers and it’s turn is effect in negative form on the ecosystem life and the different types of the water wealth.

   As result of what mention before this research came to employees Streeter-Phleps model parameters estimation which are (Kd,Kr) the de oxygenation and re oxygenation ratios on respect

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Oct 01 2021
Journal Name
Journal Of Al-rafidain University College For Sciences ( Print Issn: 1681-6870 ,online Issn: 2790-2293 )
The Use of Logistic Regression Model in Estimating the Probability of Being Affected By Breast Cancer Based On the Levels of Interleukins and Cancer Marker CA15-3
...Show More Authors

Breast cancer has got much attention in the recent years as it is a one of the complex diseases that can threaten people lives. It can be determined from the levels of secreted proteins in the blood. In this project, we developed a method of finding a threshold to classify the probability of being affected by it in a population based on the levels of the related proteins in relatively small case-control samples. We applied our method to simulated and real data. The results showed that the method we used was accurate in estimating the probability of being diseased in both simulation and real data. Moreover, we were able to calculate the sensitivity and specificity under the null hypothesis of our research question of being diseased o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 22 2021
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
MRI images series segmentation using the geodesic deformable model
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
Mixing ARMA Models with EGARCH Models and Using it in Modeling and Analyzing the Time Series of Temperature
...Show More Authors

In this article our goal is mixing ARMA models with EGARCH models and composing a mixed model ARMA(R,M)-EGARCH(Q,P) with two steps, the first step includes modeling the data series by using EGARCH model alone interspersed with steps of detecting the heteroscedasticity effect and estimating  the model's parameters and check the adequacy of the model. Also we are predicting the conditional variance and verifying it's convergence to the unconditional variance value. The second step includes mixing ARMA with EGARCH and using the mixed (composite) model in modeling time series data and predict future values then asses the prediction ability of the proposed model by using prediction error criterions.

View Publication Preview PDF
Crossref
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Estimators of the parameter and Reliability Function of Inverse Rayleigh Distribution" A comparison study "
...Show More Authors

     In this paper, Bayesian estimator for the parameter and reliability function of inverse Rayleigh distribution (IRD) were obtained Under three types of loss function, namely, square error loss function (SELF), Modified Square error loss function (MSELF) and Precautionary loss function (PLF),taking into consideration the  informative and non- informative  prior. The performance of such estimators was assessed on the basis of mean square error (MSE) criterion by performing a Monte Carlo simulation technique.

View Publication Preview PDF
Crossref
Publication Date
Mon May 14 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Comparison Between Different Approaches to Overcome the Multicollinearity Problem in Linear Regression Models
...Show More Authors

    In the presence of multi-collinearity problem, the parameter estimation method based on the ordinary least squares procedure is unsatisfactory. In 1970, Hoerl and Kennard insert analternative method labeled as estimator of ridge regression.

In such estimator, ridge parameter plays an important role in estimation. Various methods were proposed by many statisticians to select the biasing constant (ridge parameter). Another popular method that is used to deal with the multi-collinearity problem is the principal component method. In this paper,we employ the simulation technique to compare the performance of principal component estimator with some types of ordinary ridge regression estimators based on the value of t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 26 2019
Journal Name
Iraqi Journal Of Science
Modeling and Forecasting Periodic Time Series data with Fourier Autoregressive Model
...Show More Authors

Most frequently used models for modeling and forecasting periodic climatic time series do not have the capability of handling periodic variability that characterizes it. In this paper, the Fourier Autoregressive model with abilities to analyze periodic variability is implemented. From the results, FAR(1), FAR(2) and FAR(2) models were chosen based on Periodic Autocorrelation function (PeACF) and Periodic Partial Autocorrelation function (PePACF). The coefficients of the tentative model were estimated using a Discrete Fourier transform estimation method. FAR(1) models were chosen as the optimal model based on the smallest values of Periodic Akaike (PAIC) and Bayesian Information criteria (PBIC). The residual of the fitted models was diagn

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jun 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Using The Maximum Likelihood And Bayesian Methods To Estimate The Time-Rate Function Of Earthquake Phenomenon
...Show More Authors

In this research, we dealt with the study of the Non-Homogeneous Poisson process, which is one of the most important statistical issues that have a role in scientific development as it is related to accidents that occur in reality, which are modeled according to Poisson’s operations, because the occurrence of this accident is related to time, whether with the change of time or its stability. In our research, this clarifies the Non-Homogeneous hemispheric process and the use of one of these models of processes, which is an exponentiated - Weibull model that contains three parameters (α, β, σ) as a function to estimate the time rate of occurrence of earthquakes in Erbil Governorate, as the governorate is adjacent to two countr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 01 2013
Journal Name
Toxicon
Methods for simultaneous detection of the cyanotoxins BMAA, DABA, and anatoxin-a in environmental samples
...Show More Authors

View Publication Preview PDF
Scopus (33)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Methods of using the periodic chart in the case of the missing values of the stable AR model (2)
...Show More Authors

In this study, we investigate the behavior of the estimated spectral density function of stationary time series in the case of missing values, which are generated by the second order Autoregressive (AR (2)) model, when the error term for the AR(2) model has many of continuous distributions. The Classical and Lomb periodograms used to study the behavior of the estimated spectral density function by using  the simulation.

 

View Publication Preview PDF
Crossref