Background: Sex variations in coronary artery disease (CAD) are well documented. However, sex differences in coronary artery calcium (CAC) and its role in the detection of coronary artery stenosis remain controversial. Objective: To assess the impact of sex variation on coronary artery calcification and its efficacy in predicting coronary artery stenosis. Methods: This is a cross-sectional observational study including 230 consecutive patients with suspected CAD (120 men and 110 women) referred for coronary computed tomography angiography (CCTA). The study analyzed sex-based differences in the sensitivity and specificity of coronary artery calcification (CAC) for detecting moderate to severe stenosis across various coronary arteries. Results: The calcification scores 1-100 and 101-<400 were slightly more frequent in men (25% and 10%, respectively) than women (20.91% and 7.27%, respectively); however, the differences were not significant. For the left anterior descending artery (LAD), men showed slightly higher sensitivity and specificity (69.23% and 81.48%, respectively) than women (61.9% and 79.78%, respectively). For the left circumflex artery (LCX), men showed relatively higher sensitivity (68.75%) and lower specificity (89.42%) than women (50% and 98.81%, respectively). For the right coronary artery (RCA), women showed relatively higher sensitivity and specificity (75% and 93.4%, respectively) than men (50% and 91.82%, respectively). Conclusions: While the CAC has a relatively high specificity and low sensitivity in the detection of coronary artery disease, there is no difference in the score between men and women. When comparing vessels, women exhibit greater RCA calcification sensitivity and specificity than men, whereas for LAD, the opposite is true.
In this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .
Cost estimation is considered one of the important tasks in the construction projects management. The precise estimation of the construction cost affect on the success and quality of a construction project. Elemental estimation is considered a very important stage to the project team because it represents one of the key project elements. It helps in formulating the basis to strategies and execution plans for construction and engineering. Elemental estimation, which in the early stage, estimates the construction costs depending on . minimum details of the project so that it gives an indication for the initial design stage of a project. This paper studies the factors that affect the elemental cost estimation as well as the rela
... Show MoreBackground: Microscopic examination of parotid gland reveals hypertrophy of the aciner cells sometimes two to three times greater than normal size of PG, in cases associated with longstanding diabetes. This study was designed to determine the effects of duration, fasting plasma glucose and glycosylated hemoglobin on parotid gland enlargement among poorly controlled type 2 diabetes mellitus. Subjects, Materials, and Method: This study was conducted on 36 parotid glands of 18 with type 2 DM , at age range ( 40-60) years, all of them were selected from subjects attending (Endocrine clinic for diabetic patients) in Baghdad Teaching Hospital. , pg was measured with ultrasonography in both longitudinal and horizontal plane. Results: the rate of e
... Show MoreThe issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show MoreThe researcher studied transportation problem because it's great importance in the country's economy. This paper which ware studied several ways to find a solution closely to the optimization, has applied these methods to the practical reality by taking one oil derivatives which is benzene product, where the first purpose of this study is, how we can reduce the total costs of transportation for product of petrol from warehouses in the province of Baghdad, to some stations in the Karsh district and Rusafa in the same province. Secondly, how can we address the Domandes of each station by required quantity which is depending on absorptive capacity of the warehouses (quantities supply), And through r
... Show MoreEvolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust E
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show More