Preferred Language
Articles
/
mxb8j4oBVTCNdQwC3Z8w
Recursive Multi-Signal Temporal Fusions With Attention Mechanism Improves EMG Feature Extraction
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Sat Jun 07 2025
Journal Name
Intelligent Service Robotics
Grasping Stability of a Robotic Gripper with Frictional Self-Locking Mechanism
...Show More Authors

The grasping stability of robotic manipulators is crucial to enable autonomous manipulation in an environment where robots are facing obstacles in their route, where abrupt changes in the robot’s speed are induced. These speed variations will produce forces affecting the robotic manipulator, hence its grasping stability. In this research, the grasping stability of a robotic manipulator that functions according to a frictional self-locking mechanism is investigated statically and dynamically. Both theoretical and experimental results showed that the grasped object size, weight, and its orientation inside the gripper have a great effect on grasping stability. Both the theoretical and experimental results indicated that the grasping object p

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
EMG-Based Control of Active Ankle-Foot Prosthesis
...Show More Authors

 Most below-knee prostheses are manufactured in Iraq without considering the fast progress in smart prostheses, which can offer movements in the desired directions according to the type of control system designed for this purpose. The proposed design appears to have the advantages of simplicity, affordability, better load distribution, suitability for subjects with transtibial amputation, and viability in countries with people having low socio-economic status. The designed prosthetics consisted of foot, ball, and socket joints, two stepper motors, a linkage system, and an EMG shield. All these materials were available in the local markets in Iraq. The experimental results showed t

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
An Autocorrelative Approach for EMG Time-Frequency Analysis
...Show More Authors

As they are the smallest functional parts of the muscle, motor units (MUs) are considered as the basic building blocks of the neuromuscular system. Monitoring MU recruitment, de-recruitment, and firing rate (by either invasive or surface techniques) leads to the understanding of motor control strategies and of their pathological alterations. EMG signal decomposition is the process of identification and classification of individual motor unit action potentials (MUAPs) in the interference pattern detected with either intramuscular or surface electrodes. Signal processing techniques were used in EMG signal decomposition to understand fundamental and physiological issues. Many techniques have been developed to decompose intramuscularly detec

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 16 2022
Journal Name
2022 Muthanna International Conference On Engineering Science And Technology (micest)
A hybrid feature selection technique using chi-square with genetic algorithm
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Ieee Transactions On Emerging Topics In Computational Intelligence
Neuromorphic Architecture for the Hierarchical Temporal Memory
...Show More Authors

View Publication
Scopus (26)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Aro-the Scientific Journal Of Koya University
Enhancing Upper Limb Prosthetic Control in Amputees Using Non-invasive EEG and EMG Signals with Machine Learning Techniques
...Show More Authors

Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (27)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Transactions On Computers
Neuromorphic System for Spatial and Temporal Information Processing
...Show More Authors

View Publication
Scopus (22)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Wed Mar 02 2022
Journal Name
Journal Of Educational And Psychological Researches
Attention Deficit Hyperactivity Disorder (ADHD) of Primary School Pupils
...Show More Authors

The aim of this research is to diagnose the attention deficit hyperactivity disorder among primary school pupils in Baquba city of Diyala province. The sample of the study consisted of (25) male and female pupils. The American Guide of Attention Deficit Hyperactivity Scale (DSM-IV, 1994) was used in this study in addition to Conner’s (1996) scale to measure the attention deficit hyperactivity disorder for teachers and parents. The result revealed that (19) male and female pupils diagnosed with attention deficit hyperactivity to various degrees.

View Publication Preview PDF
Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal Of Science
Attention-Deficit Hyperactivity Disorder Prediction by Artificial Intelligence Techniques
...Show More Authors

Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Crossref