The high temperature superconductor’s compounds are one of the hot spot field of science, due to their applications in industries. Hg0.8Sb0.2Ba2Ca2Cu3O8+δ and Hg0.8Sb0.2Ba2Ca1Cu2O6+δ, were manufactured using a doable-step of solid state reaction method. The samples were sintered at 800 ° C. The transition temperatures Tc are found from electrically resistively by using four probe techniques. The resistivity become zero when the transition temperature Tc(offset) have 131 and 119 K, and the onset temperature Tc(onset) have 139 K for Hg0.8Sb0.2Ba2Ca2Cu3O8+δ and 132 K for Hg0.8Sb0.2Ba2Ca1Cu2O6+δ. Analysis of X-ray diffraction showed a tetragonal structure with lattice parameters changes for all samples.
KE Sharquie, AA Noaimi, E Abdulqader, WK Al-Janabi, J Dermatol Venereol, 2020 - Cited by 6
I noticed a researcher while working in the kindergarten that there is a group of
parameters resort to the use of different methods may be some undesirable and some
undesirable So felt researcher detection methods used parameters Riyadh in the face of the
pressures of life, being engaged in kindergarten eligibility, governmental or being married or
unmarried, as well as educational attainment for this parameter.
To achieve the objectives of the research: -
The researcher prepare a scale methods face the pressures of life of the parameters
have been confirmed the veracity of the paragraphs of the scale of the presentation to a group
of experts in this area, and extracted power discriminatory clauses scale and extra
Coronary heart disease (CHD) is the leading cause of death in United State (U.S.). Controlling of modifiable risk factors such as smoking, hypertension (HT), diabetes mellitus (D.M.), dyslipidemia, physical inactivity & obesity will prevent other serious cardiovascular complications
The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreTransgenic plants offer advantages for the manufacture of recombinant proteins with terminal
mannose residues on their glycan chains. So plants are chosen as source of pharmaceutical products and for
the development of alternative expression systems to produce recombinant lysosomal enzymes. In the
present study the sequence of the natural cDNA encoding for the human lysosomal enzyme
glucocerebrosidase (GCD) was modified to enhance its expression in soybean plants. The glucocerebrosidase
gene signal peptide was substituted with that signal peptide for the Arabidopsis thaliana basic endochitinase
gene to support the co-translational translocation into the endoplasmic reticulum (ER), and the storage
vacuol
The goal of this study is to investigate the relationship between the student and the teacher and the student's behavior for a subject of the student in the intermediate stage, the sample contained (568) student, (266) male and (302) female.
The scale of student – teacher relationship was built according to a questionnaire pointed to a sample of the students, adding to that reviewing a number of previous scales and studies which was about the same topic, and in the same way a measure of student behavior was constructed.
Results showed that there was significant relation between the student's teacher relationship and student behavior, and the level of student- teacher relationship is higher than the average of the population that
Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show More