The nanostructured Manganese dioxide/Carbon fiber (CF) composite electrode was prepared galvanostatically using a facile method of anodic electrodeposition by varying the reaction time and MnSO4 concentration of the electrochemical solution. The effects of these parameters on the structures and properties of the prepared electrode were evaluated. For determining the crystal characteristics, morphologies, and topographies of the deposited MnO2 films onto the surfaces of carbon fibers, the X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM) techniques were used, respectively. It found that the carbon fibers were coated with γ-MnO2 with a density that increased with increasing the deposition time and MnSO4 concentration, and vice versa for the roughness value (RMS). At conditions of 0.35 M of MnSO4 and 4h, the MnO2 nanoparticles tended to create a thin film with a uniform structure and high capacitance. The electrosorptive properties of the NMO/CF electrode were investigated by using it for removing Cu2+ ions from the aqueous solution and the influence of the applied voltage and ion strength on the Cu2+ removal efficiency was examined. The results indicate that at conditions of 2.3V applied voltage and 3 g/l of NaCl, the removal efficiency reached 98.46 % with an adsorption capacity of 218.8 mg/g.
new, simple and fast solid-phase extraction method for separation and preconcentration of trace theophylline in aqueous solutions was developed using magnetite nanoparticles (MIONPs) coated with aluminium oxide (AMIONPs) and modified with palmitate (P) as an extractor (P@AMIONPs). It has shown that the developed method has a fast absorbent rate of the theophylline at room temperature. The parameters that affect the absorbent of theophylline in the aqueous solutions have been investigated such as the amount of magnetite nanoparticle, pH, standing time and the volume, concentration of desorption solution. The linear range, limit of quantification (LOQ) and limit of detection (LOD) for the determination of theophylline were 0.05-2.450 μg mL-
... Show MoreThe CuInSe2 (CIS) nanocrystals are synthesized by arrested precipitation from molecular precursors are added to a hot solvent with organic cap- ping ligands to control nanocrystal formation and growth. CIS thin films deposited onto glass substrate by spray - coating, then selenized in Ar- atmosphere to form CIS thin films. PVs were made with power conversion efficiencies of 0.631% as -deposited and 0.846% after selenization, for Mo coated, under AM 1.5 illumination. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis it is evident that CIS have the chalcopyrite structure as the major phase with a preferred orientation along (112) direction and the atomic ratio of Cu : In : Se in the nanocrystals is nearly 1 : 1 : 2
Two simple methods spectrophotometric were suggested for the determination of Cefixime (CFX) in pure form and pharmaceutical preparation. The first method is based without cloud point (CPE) on diazotization of the Cefixime drug by sodium nitrite at 5Cº followed by coupling with ortho nitro phenol in basic medium to form orange colour. The product was stabilized and measured 400 nm. Beer’s law was obeyed in the concentration range of (10-160) μg∙mL-1 Sandell’s sensitivity was 0.0888μg∙cm-1, the detection limit was 0.07896μg∙mL-1, and the limit of Quantitation was 0.085389μg∙mL-1.The second method was cloud point extraction (CPE) with using Trtion X-114 as surfactant. Beer
... Show MoreThe primary objective of this study was to identify the mechanisms for the development and propagation of longitudinal cracks that initiate at the surface of composite pavement. In this study the finite element program ANSYS version (5.4) was used and the model worked out using this program has the ability to analyze a composite pavement structure of different layer properties. Also, the aim of this study was modeling and analyzing of the composite pavement structure with the physical presence of crack induced in concrete underlying layer. The results obtained indicates that increasing the thickness of the asphalt layer tends to decrease the stress intensity factor, which may be attributed to the rapidly decrease of horizontal tensile st
... Show MoreA particulate composite material was prepared by adding the Titanium dioxide (TiO2) with a particle size of (75-150) µm to Epoxy resin at weight percentage of (10%,20%,30%,40%,50%).The following some mechanical properties were studied,fracture toughness, hardness.casting preparation methods were used in this study includes preparing plate of matrix and composites. specimens were prepared according to ASTM for the Mechanical properties tests. After that Another samples were heat treated for three and six hour at 65C?. Fracture toughness (Kic) represent for stress intensity factor results were showed that the curve of three hours aging increases in fracture toughness (Kic) for composites but for six hours aging increases fracture tough
... Show MoreInfertility can be detected when the couples have not completed pregnancy after a year or more of normal coitus. So, in order to treat infertility, there are many supported reproductive techniques are in practice. The success rate of these techniques depends upon the way by which preparation of the paternal semen sample. Over the past 30 years, the manual has been standard as providing global standards and has been used extensively by research and clinical laboratories throughout the world. The spermatozoa of all placental (eutherian) mammals, including humans, are in a protective, no labile formal at ejaculation and are incapable of fertilization even if they are placed in direct contact with an oocyte. Accordingly, they must undergo a sub
... Show MoreThis study describes the preparation of new series of tetra-dentate N2O2 dinuclear complexes (Cr3+, Co2+, Cu2+) of the Schiff base derived from condensation of 1-Hydroxy-naphthalene-2-carbaldehyde with 2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole. The structures of the ligands were identified using IR, UV-Vis , mass, elemental analysis and 1H-NMR techniques. All prepared complexes have been characterized by conductance measurement, magnetic susceptibility, electronic spectra, infrared spectrum, theromgravimatric analysis (TGA) and metal analysis by atomic absorption. From stoichiometry of metal to ligand and all measurements show a octahedral geometry proposed for all complexes of the (Cr3+, Co2+, Cu2+). conductivity measurement shows t
... Show More