The nanostructured Manganese dioxide/Carbon fiber (CF) composite electrode was prepared galvanostatically using a facile method of anodic electrodeposition by varying the reaction time and MnSO4 concentration of the electrochemical solution. The effects of these parameters on the structures and properties of the prepared electrode were evaluated. For determining the crystal characteristics, morphologies, and topographies of the deposited MnO2 films onto the surfaces of carbon fibers, the X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM) techniques were used, respectively. It found that the carbon fibers were coated with γ-MnO2 with a density that increased with increasing the deposition time and MnSO4 concentration, and vice versa for the roughness value (RMS). At conditions of 0.35 M of MnSO4 and 4h, the MnO2 nanoparticles tended to create a thin film with a uniform structure and high capacitance. The electrosorptive properties of the NMO/CF electrode were investigated by using it for removing Cu2+ ions from the aqueous solution and the influence of the applied voltage and ion strength on the Cu2+ removal efficiency was examined. The results indicate that at conditions of 2.3V applied voltage and 3 g/l of NaCl, the removal efficiency reached 98.46 % with an adsorption capacity of 218.8 mg/g.
Thin films of Zinc Selenide ZnSe have been prepared by using thermal evaporation in vacuum technique (10-5Torr) with thickness (1000, 2700, 4000) A0 and change electrode material and deposited on glass substrates with temperature (373K) and study some electrical properties at this temperature . The graphs shows linear relation between current and voltage and the results have shown increases in the value of current and electrical conductivity with increase thickness and change electrode material from Aluminum to Copper
The new bidentate Schiff base ligand namely [(E)-N1-(4-methoxy benzylidene) benzene-1, 2-diamine] was prepared from condensation of 4-Methoxy benzaldehyde with O-Phenylene diamine at 1:1 molar ratio in ethanol as a solvent in presence of drops of 48% HBr. The structure of ligand (L) was characterized by, FT-IR, U.V-Vis., 1H-, 13C- NMR spectrophotometer, melting point and elemental microanalysis C.H.N. Metal complexes of the ligand (L) in general molecular formula [M(L)3], where M= Mn(II), Co(II), Ni(II),Cu(II) and Hg(II); L=(C14H14N2O) in ratio (1:3)(Metal:Ligand) were synthesized and characterized by Atomic absorption, FT- IR, U.V-Vis. spectra, molar conductivity, chloride content, melting point and magnetic susceptibility from the above d
... Show MoreThe cathodic deposition of zinc from simulated chloride wastewater was used to characterize the mass transport properties of a flow-by fixed bed electrochemical reactor composed of vertical stack of stainless steel nets, operated in batch-recycle mode. The electrochemical reactor employed potential value in such a way that the zinc reduction occurred under mass transport control. This potential was determined by hydrodynamic voltammetry using a borate/chloride solution as supporting electrolyte on stainless steel rotating disc electrode. The results indicate that mass transfer coefficient (Km) increases with increasing of flow rate (Q) where .The electrochemical reactor proved to be efficient in removing zinc and was abl
... Show MoreIn this work, metal oxides nanostructures, mainly, copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure were synthesized by dc reactive magnetron sputtering technique. The structural purity and nanoparticle size of the prepared nanostructures were determined. The individual metal oxide samples (CuO, NiO and TiO2) showed high structural purity and minimum particle sizes of 34, 44, 61 nm, respectively. As well, the multilayer structure showed high structural purity as no elements or compounds other than the three oxides were founds in the final sample while the minimum particle size was 18 nm. This reduction in nanoparticle size can be considered as an advantage for the dc reactive magnetron sputtering tec
... Show MoreBackground: The repair of bone defects remains a major clinical orthopaedic challenge. Bone is a highly vascularised tissue reliant on the close spatial and temporal connection between blood vessels and bone cells to maintain skeletal integrity. This study aimed to study the efficacy of Panax ginseng as a osteoinducer in tibia of rat and as a stimulator for bone healing and to study the immunohistochemical expression of osteonectin as bone formation markers in experimental and control groups during bone healing. Material and method: : In this study thirty albino male rats , weighting (200-300) gram ,aged (2-3) months ,will be used under control conditions of temperature ,drinking and food consumption. The animals will subject for an
... Show MoreCloud point extraction is a simple, safe, and environmentally friendly technique for preparing many different kinds of samples. In this review, we discussed the CPE method and how to apply it to our environmental sample data. We also spoke about the benefits, problems, and likely developments in CPE. This process received a great deal of attention during preconcentration and extraction. It was used as a disconnection and follow-up improvement system before the natural mixtures (nutrients, polybrominated biphenyl ethers, pesticides, polycyclic sweet-smelling hydrocarbons, polychlorinated compounds, and fragrant amines) and inorganic mixtures were examined and many metals like (silver, lead, cadmium, mercury, and so on). We also find
... Show More
