Preferred Language
Articles
/
moaPQYYBIXToZYAL7oBk
Preparation of nanostructured MnO2/carbon fiber composite electrode for removal of Cu2+ ions from aqueous solution by electrosorption process
...Show More Authors

The nanostructured Manganese dioxide/Carbon fiber (CF) composite electrode was prepared galvanostatically using a facile method of anodic electrodeposition by varying the reaction time and MnSO4 concentration of the electrochemical solution. The effects of these parameters on the structures and properties of the prepared electrode were evaluated. For determining the crystal characteristics, morphologies, and topographies of the deposited MnO2 films onto the surfaces of carbon fibers, the X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM) techniques were used, respectively. It found that the carbon fibers were coated with γ-MnO2 with a density that increased with increasing the deposition time and MnSO4 concentration, and vice versa for the roughness value (RMS). At conditions of 0.35 M of MnSO4 and 4h, the MnO2 nanoparticles tended to create a thin film with a uniform structure and high capacitance. The electrosorptive properties of the NMO/CF electrode were investigated by using it for removing Cu2+ ions from the aqueous solution and the influence of the applied voltage and ion strength on the Cu2+ removal efficiency was examined. The results indicate that at conditions of 2.3V applied voltage and 3 g/l of NaCl, the removal efficiency reached 98.46 % with an adsorption capacity of 218.8 mg/g.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 30 2001
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Chromium from Wastewater by Adsorption
...Show More Authors

View Publication Preview PDF
Publication Date
Wed Dec 01 2010
Journal Name
Al-khwarizmi Engineering Journal
The Biosorption of Cr (VI) From Aqueous Solution Using Date Palm Fibers (Leef)
...Show More Authors

The ability of Cr (VI) removal from aqueous solution using date palm fibers (leef) was investigated .The effects of pH, contact time, sorbets concentration and initial  metal ions concentration on the biosorption were investigated.

The residual concentration of Cr (VI) in solution was determined colorimetrically using spectrophotometer at wave length 540 nm .The biosorption was pH-dependent, the optimum pH was 7 and adsorption isotherms obtained fitted well with Langmuir isotherms .The Langmuir equation obtained was Ce/Cs = 79.99 Ce-77.39, the correlation factor was 0.908.These results indicate that date palm fibers (leef) has a potential effect for the uptake of Cr (VI) from industrial waste water.

View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
A comparison between banana peel powder and gel for removing methylene blue dye from aqueous solution
...Show More Authors

This research aims to removes dyes from waste water by adsorption using banana peels. The conduct experiment done by banana powder and banana gel to compare between them and find out which one is the most efficient in adsorption. Studying the effects different factors on adsorption material and calculate the best removal efficiency to get rid of the methylene blue dye (MB).

View Publication
Scopus Crossref
Publication Date
Sat Apr 01 2017
Journal Name
2017 International Conference On Environmental Impacts Of The Oil And Gas Industries: Kurdistan Region Of Iraq As A Case Study (eiogi)
Inverse fluidized bed for chromium ions removal from wastewater and produced water using peanut shells as adsorbent
...Show More Authors

View Publication
Scopus (5)
Scopus Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Iraqi Journal Of Physics
A Study of the mechanical properties of aluminum composite materials prepared by atomization process
...Show More Authors

Steel fiber aluminum matrix composites were prepared by atomization technique. Different air atomization conditions were considered; which were atomization pressure and distance between sample and nozzle. Tensile stress properties were studied. XRF and XRD techniques were used to study the primary compositions and the structure of the raw materials and the atomized products. The tensile results showed that the best reported tensile strength observed for an atomization pressure equal to 4 mbar and sample to nozzle distance equal to 12 cm. Young modulus results showed that the best result occurred with an air atomization pressure equal to 8 mbar and sample to nozzle distance equal to 16cm

View Publication Preview PDF
Publication Date
Tue Apr 24 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Three Locally Clays as A Surfaces for Adsorption of Cephalexin Monohydrate From Aqueous Solution: Thermodynamic and Desorption Equilibrium
...Show More Authors

    The  adsorption of cephalexin.H2O from aqueous solution on attapulgite, bentonite and kaolin has been studied at the human body temperature (37.5ËšC) and at 5, 27, 47ËšC in 0.1M hydrochloric acid (pH 1.2). The value of pH 1.2 has been chosen to simulate the pH of stomach fluid. The clays show the following order: Bentonite > attapulgite > kaolin, for their activity to adsorb cephalexin.H2O. The charged clay particles can attract molecules either by electrostatic forces, for the molecules of oppositely charged, or by inducing dipole formation in the neutral molecule. The L-shaped adsorption isotherm indicated that drug molecules arrangement in a flat geometry on the clay surface. The

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Removal of Copper Ions onto Walnut Shells by Using Batch and Continuous Fluidized Bed
...Show More Authors

An agricultural waste (walnut shell) was undertaken to remove Cu(II) from aqueous solutions in batch and continuous fluidized bed processes. Walnut shell was found to be effective in batch reaching 75.55% at 20 and 200 rpm, when pH of the solution adjusted to 7. The equilibrium was achieved after 6 h of contacting time. The maximum uptake was 11.94mg/g. The isotherm models indicated that the highest determination coefficient belongs to Langmuir model. Cu (II) uptake process in kinetic rate model followed the pseudo-second-order with determination coefficient of 0.9972. More than 95% of the Cu(II) were adsorbed on the walnut shells within 6 h at optimum agitation speed of 800 rpm. The main functional groups responsible for biosorption of

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Materials Today: Proceedings
Investigating the elastic and plastic behavior of I-steel beams by using carbon fiber laminates
...Show More Authors

View Publication
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Optimization of Fenton process for removal of chemical oxygen demand (COD) from hospital wastewater using response surface methodology (RSM)
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Mon Mar 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Dyes from Wastewater of Textile Industries Using Activated Carbon and Activated Alumina
...Show More Authors

This work was carried to study the capability of activated alumina from bauxite compared with activated carbon adsorption capability to reduce the color content from Al-Hilla Textile Company wastewater. Six dyes were studied from two types(reactive and dispersed) namely (blue, red, yellow) from wastewater and aqueous solutions.
Forty eight experiments were carried out to study the effect of various initial conditions (bed height, flow rate, initial concentration, pH value, temperature, and competitive adsorption) on adsorption process.
The results showed that the adsorption process using activated carbon insured a good degree of color reduction reaching (99.7%) and was better than activated bauxite which reached (95%).

View Publication Preview PDF