We have investigated the impact of laser pulse wavelength on the quantity of ablated materials. Specifically, this study investigated the structural, optical, and morphological characteristics of tungsten trioxide (WO3) nanoparticles (NPs) that were synthesized using the technique of pulsed-laser ablation of a tungsten plate. A DD drop of water was used as the ablation environment at a fixed fluence at 76.43 J/cm2 and pulse number was 400 pulses of the laser. The first and second harmonic generation ablations were carried out, corresponding to wavelengths of 1064 and 532 nm, respectively. The Q-switched Nd: YAG laser operates at a repetition rate of 1 Hz and has a pulse width of roughly 15 ns. These parameters are applicable to both wavelengths and are maintained at room temperature. Results of the absorption spectra demonstrated that the quantity of material ablated is inversely proportional to the laser pulses' wavelength. FESEM and TEM images show that WO3-NPs, which were prepared by both samples, were spherical. They also show that the wavelength of laser pulses caused an increase in the particle size of NPs. The X-ray diffraction analysis revealed a polycrystalline structure with a preferential orientation along the (220) plane, which corresponded to a diffraction angle of 58.84°. The energy of the optical bandgap of WO3-NPs increases with a decrease in the wavelength of laser pulses, which is calculated to be 3.4 and 3.42 eV for 1064nm and 532 nm wavelengths, respectively. The photoluminescence result agrees well with the estimated optical band gaps.
This work aimed to study the effect of laser surface treatment on the mechanical characteristics and corrosion behaviour of grey cast iron type A159. Many technical applications used conventional surface treatment, but laser surface hardening has recently been used to enhance the surface properties of many alloys. The mechanical characteristics, including microstructure, microhardness, and wear resistance of A159 grey cast iron, were studied, in addition to corrosion behaviour. The experimental laser parameters in this work were 0.9, 1.2, and 1.5 KW power with continuous wave carbon dioxide lasers with scanning speeds of 10 and 12 mm/s were used. The results found that phase-transitional alterations in microstructure were influenced by lase
... Show MoreTemporomandibular Disorders (TMD) refer to a group of symptoms where pain is the most leading cause to demand a treatment by the patient. Light therapies are of great importance at current times due to its biosafety and non-invasive quality when used for the management of TMD symptoms. This study aimed to evaluate the efficacy of red LED light with low-level LASER in treating TMD patients.
A double-blind randomized clinical study was conducted and included 60 patients along 3 groups (20 for e
Abstract: Aluminum alloys grade 6061-T6 are characterized by their excellent properties and processing characteristics which make them ideal for varieties of industrial applications under cyclic loading, aluminum alloys show less fatigue life than steel alloys of similar strength. In the current study, a nanosecond fiber laser of maximum pulse energy up to 9.9 mJ was used to apply laser shock peening process (LSP) on aluminum thin sheets to introduce residual stresses in order to enhance fatigue life under cyclic loading Box-Behnken design (BBD) based on the design of experiments (DOE) was employed in this study for experimental design data analysis, model building and optimization The effect of working parameters spot size (ω), scannin
... Show Morein this work the polymides were prepared as rthemally stable polymers by diffrent ways
Background: clinically significant macular edema (CSME) is the commonest cause of visual loss in patients with diabetes mellitus and laser focal photocoagulation is the golden standard for treating it. Patients and Methods: A frequency doubled Nd: YAG laser was used to treat all eyes included in this study with diabetic maculopathy. Thirty eyes of three insulin dependent and twenty six non insulin dependent diabetic Iraqi patients were included. The study involved twenty six males, three females and followed for one year. Their ages were ranging between 36- 59 years, all of them from patients attending ophthalmic out-patient department in the medical city in the period between January 2005 and June 2006. Eyes divided in to two groups (fifte
... Show MoreThe purpose of this work was to study the effects of the Nd:YAG laser on exposed dentinal
tubules of human extracted teeth using a scanning electron microscope (SEM). Eighty 2.5mm-thick
slices were cut at the cementoenamel junction from 20 extracted human teeth with an electric saw. A
diamond bur was used to remove the cementum layer to expose the dentinal tubules. Each slice was
sectioned into four equal quadrants and the specimens were randomly divided into four groups (A to D ).
Groups B to D were lased for 2 mins using an Nd:YAG laser at 6 pulses per second at energy outputs of
80 , 100 and 120 mJ. Group A served as control. Under SEM observation, nonlased specimens showed
numerous exposed dentinal tubules. SEM o
Objective: This study aimed to evaluate the effect of coating titanium (Ti) dental implant with polyether ketone ketone (PEKK) polymer using magnetron sputtering on osseointegration, trying to overcome some of the problems associated with Ti alloys. Material and Methods: Implants were prepared from grade (II) commercially pure titanium (CP Ti), then laser was used to induce roughness on the surface of Ti. PEKK was deposited on the surface of Ti implants by radiofrequency (RF) magnetron sputtering technique. The implants were divided in to three groups: without coating (Ls), with PEKK coating using argon (Ar) as sputtering gas (Ls-PEKK-Ar), and with PEKK coating using nitrogen (N) as sputtering gas (Ls-PEKK-N). All the implants were implante
... Show More