We have investigated the impact of laser pulse wavelength on the quantity of ablated materials. Specifically, this study investigated the structural, optical, and morphological characteristics of tungsten trioxide (WO3) nanoparticles (NPs) that were synthesized using the technique of pulsed-laser ablation of a tungsten plate. A DD drop of water was used as the ablation environment at a fixed fluence at 76.43 J/cm2 and pulse number was 400 pulses of the laser. The first and second harmonic generation ablations were carried out, corresponding to wavelengths of 1064 and 532 nm, respectively. The Q-switched Nd: YAG laser operates at a repetition rate of 1 Hz and has a pulse width of roughly 15 ns. These parameters are applicable to both wavelengths and are maintained at room temperature. Results of the absorption spectra demonstrated that the quantity of material ablated is inversely proportional to the laser pulses' wavelength. FESEM and TEM images show that WO3-NPs, which were prepared by both samples, were spherical. They also show that the wavelength of laser pulses caused an increase in the particle size of NPs. The X-ray diffraction analysis revealed a polycrystalline structure with a preferential orientation along the (220) plane, which corresponded to a diffraction angle of 58.84°. The energy of the optical bandgap of WO3-NPs increases with a decrease in the wavelength of laser pulses, which is calculated to be 3.4 and 3.42 eV for 1064nm and 532 nm wavelengths, respectively. The photoluminescence result agrees well with the estimated optical band gaps.
This study included the fabrication of compound (Tl2-xHgxBa2-ySryCa2Cu3O10+δ) in a manner solid state and under hydrostatic pressure ( 8 ton/cm2) and temperature annealing(850°C), and determine the effect of the laser on the structural and electrical properties elements in the compound, and various concentrations of x where (x= 0.1,0.2,0.3 ). Observed by testing the XRD The best ratio of compensation for x is 0.2 as the value of a = b = 5.3899 (A °), c = 36.21 (A °) show that the installation of four-wheel-based type and that the best temperature shift is TC= 142 K .When you shine a CO2 laser o
... Show MoreObliquely deposited (70o) Bi, Sb, and Bi-Sb alloy thin films have been prepared by thermal
resistive technique. Structural properties of these films were studied using XRD. Their resistance and
voltage responsivity for Nd:YAG and CO2 laser pulses have been recorded as function of operating
temperature between 10 oC and 120 oC. It was found that the maximum responsivity for these detectors
can be obtained at 75 oC. On the other hand, the dependence of responsivity on the width of detectors was
investigated.
Surface plasmon resonance could increase the efficiency of solar cells , when light is trapped by the noble metallic nanoparticles arrangement at and into the silicon solar cell (SSC) surface. Pure noble metal (silver and gold) nanoparticles (NPs) have been synthesized as colloids in de-ionized water (DW) by pulsed laser ablation (PLA) process at optimum laser fluence. Silicon solar cell with low efficiency was converted to plasmonic silicon solar cell by overcasting deposition method of silver nanoparticles on the front side of the SSC. The performance of plasmonic solar cell (PSC) was increased due to light trapping. Two mechanisms were involved : inserting silver
... Show MoreThe triggering effect for the face pumping of Nd:YVO4 disc medium of 4×5×0.5 mm was investigated using bulk diode laser at different resonator cavity length in pulse mode and at repetition rate of 1.3kHz. The maximum emitted peak power was found to be 100, 82, and 66 mW for resonator lengths of 10, 13.5, and 17.5 cm respectively, while the threshold pumping power was found to be 41mW. The maximum emitted peak power obtained was 300 mW when using external triggering and 10cm length, with repetition of 3Hz.
In this work, polypyrrole (PPy) composites were chemically prepared by a chemical oxidation method. Also, Tungsten Trioxide (WO3) nanoparticles were prepared and added in certain proportions to PPy. The structure properties were studied for the polypyrole and tungesten trioxide separately before mixing them together. The X-ray diffraction (XRD) analysis revealed a hexagonal WO3 and a triclinic PPy. It was observed that the nano-composite prepared by the addition of WO3 with 10 and 20% volume ratios to PPy shows a triclinic phase with the presence of hexagons. The molecular structures of PPy, WO3, and PPy–WO3 nano composites were depicted by Fourier-transform infrare
... Show MoreThis work describes an experimental setup to evaluate the photodynamictoxicity of 650 nm diode laser and 532 nm Frequency-doubled Q-Switched Nd:YAG laser on the growth of Candida albicans as well as the potential fungicidal effect when combining the laser irradiation with specific photosensitizers namely methylene blue, toluidine blue, acridine orange and safranin O. In this study the findings showed that the number of colony-forming units per millilitre (CFU/ml) of C. albicans decreased with increasing exposure time. In particular in the case of the frequency doubled Nd:YAG laser combined with safranin O, the best lethal effect occurred at 11 minutes exposure time with 2.26 J/cm² energy density (89.18% reduction) in comparison with the
... Show MoreBackground Alloys with the addition of zirconium and niobium eliminate the adverse effects of aluminum and vanadium on the nervous system, the possibility of metallosis and the initiation of diseases (including cancers or Alzheimer›s disease). In addition, they have better corrosion resistance, and a Young›s modulus value similar to longitudinal bone tissue. Therefore, only choosing appropriate materials does not guarantee proper functioning of the implants, the surfaces of the implants also have to be suitable to meet the requirements. The laser surface hardening process modifies the surface properties by imparting microstructural changes, whereas surface remelting induces changes in the surface topography, roughness, wettability and w
... Show MoreThis research focuses on improvement of the corrosion behaviour of commercial pure titanium (Ti) grade II when exposed to Hank’s solution through different surface treatments. The disc shape of titanium samples were constructed to be divided according to their surface treatment. The first experimental group the Ti sample was exposed to computer numerical control (CNC) fiber laser machine. Whereas, the other experimental group the Ti sample was only coated with Polyetherketon keton (PEKK) by using carbon dioxide (CO2) laser technique while the last experimental group the Ti sample was treated with CNC fiber laser followed by PEKK coating by using CO2 laser technique. All were compared with the untreated control group. The electrochemical a
... Show More