Preferred Language
Articles
/
mhem3ZEBVTCNdQwC9Zvf
WO2016135512 - STEEL-CONCRETE COMPOSITE STRUCTURE
...Show More Authors

A steel-concrete composite structure (1) is described. The steel-concrete composite structure comprises a steel member (2) having an upper surface (5) and a plurality of shear connector elements (6) upstanding from the upper surface and a concrete slab (4) having upper and lower surfaces (7, 8). The slab is supported on its lower surface by the upper surface of the steel member. The slab comprises a plurality of through holes (9) between the upper and lower surfaces, each through hole tapering towards the lower surface so as to form an inverted frustally-shaped seating surface (10). The concrete slab is configured and positioned with respect to the steel member such that at least one shear connector element projects into each through hole. The steel-concrete composite structure comprises a plurality of removable inverted frustoconical plugs (15), each plug having top and bottom surfaces (18, 19; Fig. 6) and an inverted frustoconically-shaped plugging surface (20; Fig. 6). Each plug has at least one through hole (16) between the top and bottom surfaces. At least one plug (15) is seated in a corresponding through hole (9) of the concrete slab. Each plug is configured such that at least one of the least one shear connector elements (6) projecting into the corresponding through hole (9) is received by a corresponding though hole (16) of the plug. The structure also comprises a plurality of fasteners (17, 29), each fastener coupled to a corresponding shear connector element and arranged to discourage removal of a plug (15) from a through hole (9) of the concrete slab.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
EXPERIMENTAL AND THEORETICAL INVESTIGATIONS FOR BEHAVIOR OF PRECAST CONCRETE GIRDERS WITH CONNECTIONS
...Show More Authors

This research presents experimental and theoretical investigation of 15 reinforced concrete spliced and nonspliced girder models. Splices of hooked dowels and cast in place joints, with or without strengthening steel plates were used. Post-tensioning had been used to enhance the splice strength for some spliced girders. The ANSYS computer program was used for analyzing the spliced and non-spliced girders. A nonlinear three dimensional element was used to represent all test girders. The experimental results have shown that for a single span girder using steel plate connectors in the splice zone has given a sufficient continuity to resist flexural stresses in this region. The experimental results have shown that the deflection of hooked do

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
Influence of Internal Sulfate Attack on Some Properties of High Strength Concrete
...Show More Authors

One of the most important problems that faces the concrete industry in Iraq is the deterioration due to internal sulfate attack , since it  reduces the compressive strength and increases the expansion of concrete. Consequently, the concrete structure may be damage .The effects of total and total effective sulfate contents on high strength concrete (HSC) have been studied in the present study.

The research studied the effect of sulfate content in cement , sand and gravel , as well as comparing  the total sulfate content with the total effective SO3 content. Materials used were divided into two groups of SO3 in cement ,three groups of SO3 in sand ,and two groups of SO

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 12 2021
Journal Name
Engineering, Technology & Applied Science Research
The Effect of Nanomaterials on the Properties of Limestone Dust Green Concrete
...Show More Authors

Portland cement is considered the most involved product in environmental pollution. It is responsible for about 10% of global CO2 emissions [1]. Limestone dust is a by-product of limestone plants and it is produced in thousands of tons annually as waste material. To fulfill sustainability requirements, concrete production is recommended to reduce Portland cement usage with the use of alternative or waste materials. The production of sustainable high strength concrete by using nanomaterials is one of the aims of this study. Limestone dust in 12, 16, and 20% by weight of cement replaced cement in this study. The study was divided into two parts: the first was devoted to the investigation of the best percentage of replacement of waste

... Show More
View Publication
Crossref (9)
Crossref
Publication Date
Tue Sep 24 2019
Journal Name
Journal Of Engineering
Flexural Performance of Laced Reinforced Concrete Beams under Static and Fatigue Loads
...Show More Authors

This paper introduces experimental results of eighteen simply supported reinforced concrete beams of cross sections ( ) and length 3000 mm to study the effect of lacing reinforcement on the performance of such beams under static and fatigue loads. Twelve reinforced concrete beams (two of them are casted with vertical shear reinforcement used as control beams) are tested under four points bending loading with displacement control technique and six laced reinforced concrete beams were exposed to high frequency (10 Hz) by fixing the fatigue load in each cycle. Three parameters are used in the designed beams, which are: lacing bar diameter (4mm, 6mm, and 8mm), lacing bar inclination angle to horizontal , and lacing steel rat

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
Studying of Some Mechanical Properties of Reactive Powder Concrete Using Local Materials
...Show More Authors

This research aims to investigate and evaluate a reactive powder concrete (RPC) cast using economical materials. Its mechanical properties were investigated and evaluated by studying the effects of using different cement and silica fume contents and locally steel fibers aspect ratios as reinforcement for this concrete. A compressive strength of about 155.2MPa, indirect tensile strength of 16.0MPa, modulus of elasticity of 48.7GPa, flexural strength of 43.5MPa, impact energy of 3294.4kN.m and abrasion loss 0.59%  have been achieved for reinforced RPC contains  910 kg/m3 cement content, silica fume content 185 kg/m3 of cement weight and fiber volume fraction 2%. The water absorption values w

... Show More
View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Civil Engineering Journal
The Suitability of Bailey Method for Design of Local Asphalt Concrete Mixture
...Show More Authors

The study investigated the behaviour of asphalt concrete mixes for aggregate gradations, according to the Iraqi specification using the Bailey method designed by an Excel spreadsheet. In mixing aggregates with varying gradations (coarse and fine aggregate), The Bailey method is a systematic methodology that offers aggregate interlocking as the backbone of the framework and a controlled gradation to complete the blends. Six types of gradation are used according to the bailey method considered in this study. Two-course prepared Asphalt Concrete Wearing and Asphalt Concrete binder, the Nominal Maximum Aggregate Sizes (NMAS) of the mixtures are 19 and 12.5 mm, respectively. The total number of specimens was 240 for both layers (15 samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Experimental Behavior of Laced Reinforced Concrete One Way Slab under Static Load
...Show More Authors

Test results of eight reinforced concrete one way slab with lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural behavior of one way slabs. The test parameters were the lacing steel ratio, flexural steel ratio and span to the effective depth ratio. One specimen had no lacing reinforcement and the remaining seven had various percentages of lacing and flexural steel ratios. All specimens were cast with normal density concrete of approximately 30 MPa compressive strength. The specimens were tested under two equal line loads applied statically at a thirds part (four point bending test) up to failure. Three percentage of lacing and flexural steel ratios wer

... Show More
View Publication Preview PDF
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
Numerical Prediction of Bond-Slip Behavior in Simple Pull-Out Concrete Specimens
...Show More Authors

In this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of t

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Results In Engineering
Effectiveness of embedded through-section technique in strengthening reinforced concrete spandrel beams
...Show More Authors

View Publication
Crossref (7)
Crossref
Publication Date
Sat Aug 10 2019
Journal Name
Engineering, Technology & Applied Science Research
Performance of Segmental Post-Τensioned Concrete Beams Exposed to High Fire Temperature
...Show More Authors

The present study illustrates observations, record accurate description and discussion about the behavior of twelve tested, simply supported, precast, prestressed, segmental, concrete beams with different segment numbers exposed to high fire temperatures of 300°C, 500°C, and 700°C. The test program included thermal tests by using a furnace manufactured for this purpose to expose to high burning temperature (fire flame) nine beams which were loaded with sustaining dead load throughout the burning process. The beams were divided into three groups depending on the precast segments number. All had an identical total length of 3150mm but each had different segment number (9, 7, and 5 segments), in other words, different segment length

... Show More
View Publication Preview PDF
Crossref (6)
Crossref