Preferred Language
Articles
/
mhZ3yIoBVTCNdQwCTaX5
Hierarchically porous zeolite X composites for manganese ion-exchange and solidification: Equilibrium isotherms, kinetic and thermodynamic studies

Scopus Clarivate Crossref
View Publication
Publication Date
Tue May 01 2018
Journal Name
Journal Of Global Pharma Technology
Equilibrium, thermodynamic and kinetic study of the adsorption of a new mono azo dye onto natural Iraq clay

In the present work, bentonite clay was used as an adsorbent for the removal of a new prepared mono azo dye, 4-[6-bromo benzothiazolyl azo] thymol (BTAT) using batch adsorption method. The effect of many factors like adsorption time, adsorbent weight, initial BTAT concentration and temperature has been studied. The equilibrium adsorption data was described using Langmuir and frundlich adsorption isotherm. Based on kinetics study, it was found that the adsorption process follow pseudo second order kinetics. Thermodynamics data such as Gibbes Free energy ∆Gᵒ, entropy ∆Sᵒ and ∆Hᵒ were also determined using Vant Hoff plot.

Scopus (4)
Scopus
Publication Date
Fri Jun 30 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Adsorption Kinetic and Isotherms Studies of Thiophene Removal from Model Fuel on Activated Carbon Supported Copper Oxide

In the present study, activated carbon supported metal oxides was prepared for thiophene removal from model fuel (Thiophene in n-hexane) using adsorptive desulfurization technique. Commercial activated carbon was loaded individually with copper oxide in the form of Cu2O/AC. A comparison of the kinetic and isotherm models of the sorption of thiophene from model fuel was made at different operating conditions including adsorbent dose, initial thiophene concentration and contact time. Various adsorption rate constants and isotherm parameters were calculated. Results indicated that the desulfurization was enhanced when copper was loaded onto activated carbon surface. The highest desulfurization percent for Cu2O/AC and o

... Show More
View Publication Preview PDF
Publication Date
Sat Jul 02 2016
Journal Name
Bioremediation Journal
Kinetic, thermodynamic, and equilibrium biosorption of Pb(II), Cu(II), and Ni(II) using dead mushroom biomass under batch experiment

In this study, a low-cost biosorbent, dead mushroom biomass (DMB) granules, was used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physicochemical parameters, such as initial metal ion concentration, equilibrium time, pH value, agitation speed, particles diameter, and adsorbent dosage, were studied. Five mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich-Peterson, Sips, and Khan models. The best fit to the Pb(II) and Ni(II) biosorption results was obtained by Langmuir model with maximum uptake capacities of 44.67 and 29.17 mg/g for these two ions, respectively, w

... Show More
Crossref (5)
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Kinetic, Isotherm and Thermodynamic Studies on the Ciprofloxacin Adsorption from Aqueous Solution Using Aleppo bentonite

          Aleppo bentonite was investigated to remove ciprofloxacin hydrochloride from aqueous solution. Batch adsorption experiments were conducted to study the several factors affecting the removal process, including contact time, pH of solution, bentonite dosage, ion strength, and temperature. The optimum contact time, pH of solution and bentonite dosage were determined to be 60 minutes, 6 and 0.15 g/50 ml, respectively. The bentonite efficiency in removing CIP decreased from 89.9% to 53.21% with increasing Ionic strength from 0 to 500mM, and it increased from 89% to 96.9% when the temperature increased from 298 to 318 K. Kinetic studies showed that the pseudo second-order model was the best in describing  the adsorption sys

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Equilibrium, Kinetic, and Thermodynamic Study of Removing Methyl Orange Dye from Aqueous Solution Using Zizphus spina-christi Leaf Powder

In this study, Zizphus spina-christi leaf powder was applied for the adsorption of methyl orange. The effect of different operating parameters on the Batch Process adsorption was investigated such as solution pH (2-12), effect of contact time (0-60 min.), initial dye concentration (2-20 mg/L), effect of adsorbent dosage (0-4.5 g) and effect of temperature (20-50ᵒC). The results show a maximum removal rate and adsorption capacity (%R= 23.146, qe = 2.778 mg/g) at pH = 2 and equilibrium was reached at 40 min. The pseudo- second-order kinetics were found to be best fit for the removal process (R2 = 0.997). Different isotherm models (Langmuir, Freundlich, Dubini-Radushkevich,Temkin)  were applied in this stud

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Microporous And Mesoporous Materials
Synthesis of hierarchically porous ZSM-5 zeolite by self-assembly induced by aging in the absence of seeding-assistance

View Publication
Scopus (44)
Crossref (38)
Scopus Clarivate Crossref
Publication Date
Sat Mar 17 2012
Journal Name
Environmental Science And Pollution Research Volume
Equilibrium, kinetic, and thermodynamic biosorption of Pb(II), Cr(III), and Cd(II) ions by dead anaerobic biomass from synthetic wastewater

Purpose Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal. Materials and methods Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied. Results The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that

... Show More
View Publication Preview PDF
Crossref (50)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Water, Air, & Soil Pollution
Sunflower Husks Coated with Copper Oxide Nanoparticles for Reactive Blue 49 and Reactive Red 195 Removals: Adsorption Mechanisms, Thermodynamic, Kinetic, and Isotherm Studies

View Publication
Publication Date
Sun Jan 01 2023
Journal Name
Water, Air, And Soil Pollution
Sunflower Husks Coated with Copper Oxide Nanoparticles for Reactive Blue 49 and Reactive Red 195 Removals: Adsorption Mechanisms, Thermodynamic, Kinetic, and Isotherm Studies

The adsorption process of reactive blue 49 (RB49) dye and reactive red 195 (RR195) dye from an aqueous solutions was explored using a novel adsorbent produced from the sunflower husks encapsulated with copper oxide nanoparticle (CSFH). Primarily, the features of a CSFH, such as surface morphology, functional groups, and structure, were characterized. It was determined that coating the sunflower husks with copper oxide nanoparticles greatly improved the surface and structural properties related to the adsorption capacity. The adsorption process was successful, with a removal efficiency of 97% for RB49 and 98% for RR195 under optimal operating conditions, contact time of 180 min, pH of 7, agitation speed of 150 rpm, initial dye concentration

... Show More
Crossref (18)
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Removal of Cu2+, Pb2+ , And Ni 2+ Ions From Simulated Waste Water By Ion Exchange Method On Zeolite And Purolite C105 Resin

The removal of heavy metal ions from wastewater by ion exchange resins ( zeolite and purolite C105), was investigated. The adsorption process, which is pH dependent, shows maximum removal of metal ions at pH 6 and 7 for zeolite and purolite C105 for initial metal ion
concentrations of 50-250 mg/l, with resin dose of 0.25-3 g. The maximum ion exchange capacity was found to be 9.74, 9.23 and 9.71 mg/g for Cu2+, Pb2+, and Ni2+ on zeolite respectively, while on purolite C105 the maximum ion exchange capacity was found to be 9.64 ,8.73 and 9.39 for Cu2+, Pb2+, and Ni2+ respectively. The maximum removal was 97-98% for Cu2+ and Ni2+ and 92- 93% for Pb2+ on zeolite, while it was 93-94% for Cu2+, 96-97% for Ni2+, and 87-88% for Pb2+ on puroli

... Show More
View Publication Preview PDF
Crossref (4)
Crossref