Because the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulation methods which are Mean Monte Carlo Finite difference (MMC_FD) and Mean Latin Hypercube Finite difference (MLH_FD), are also used to solve the proposed epidemic model under study. The obtained results are discussed, tabulated, and represented graphically. Finally, the absolute error is the tool used to compare the numerical simulation solutions from 2020 to 2024 years. The behavior of the Coronavirus in Iraq has been expected for 4 years from 2020 to 2024 using the proposed numerical simulation methods.
A streptococci has recognized as Streptococcus spp., associate with acute pharyngitis. S. pyogenes infection Has detected in the Hospital and Health Center in Tikrit city. Throat swabs sample has obtained and cultured on a sheep blood agar plate. Identification of S. pyogenes was performed by using the VITEK 2 automatic system. It detected of 50 samples from children included 25 were positive for S. pyogenes infection. were aged 10-35 years old and included 30 male and 20 female. . While 25 sample Negative of S. pyogenes infection (The control group included 25 clinically healthy children without S. pyogenes infection matched for age and sex with cases pateints). No significa
... Show MoreIn this paper a system is designed on an FPGA using a Nios II soft-core processor, to detect the colour of a specific surface and moving a robot arm accordingly. The surface being detected is bounded by a starting mark and an ending mark, to define the region of interest. The surface is also divided into sections as rows and columns and each section can have any colour. Such a system has so many uses like for example warehouses or even in stores where their storing areas can be divided to sections and each section is coloured and a robot arm collects objects from these sections according to the section’s colour also the robot arm can organize objects in sections according to the section’s colour.
In this paper a system is designed on an FPGA using a Nios II soft-core processor, to detect the colour of a specific surface and moving a robot arm accordingly. The surface being detected is bounded by a starting mark and an ending mark, to define the region of interest. The surface is also divided into sections as rows and columns and each section can have any colour. Such a system has so many uses like for example warehouses or even in stores where their storing areas can be divided to sections and each section is coloured and a robot arm collects objects from these sections according to the section’s colour also the robot arm can organize objects in sections according to the section’s colour.
HTH Ali Tarik Abdulwahid , Ahmed Dheyaa Al-Obaidi , Mustafa Najah Al-Obaidi, eNeurologicalSci, 2023
The aim of this paper is to design fast neural networks to approximate periodic functions, that is, design a fully connected networks contains links between all nodes in adjacent layers which can speed up the approximation times, reduce approximation failures, and increase possibility of obtaining the globally optimal approximation. We training suggested network by Levenberg-Marquardt training algorithm then speeding suggested networks by choosing most activation function (transfer function) which having a very fast convergence rate for reasonable size networks. In all algorithms, the gradient of the performance function (energy function) is used to determine how to
... Show MoreThis paper investigates an effective computational method (ECM) based on the standard polynomials used to solve some nonlinear initial and boundary value problems appeared in engineering and applied sciences. Moreover, the effective computational methods in this paper were improved by suitable orthogonal base functions, especially the Chebyshev, Bernoulli, and Laguerre polynomials, to obtain novel approximate solutions for some nonlinear problems. These base functions enable the nonlinear problem to be effectively converted into a nonlinear algebraic system of equations, which are then solved using Mathematica®12. The improved effective computational methods (I-ECMs) have been implemented to solve three applications involving
... Show MoreIn this paper a system is designed and implemented using a Field Programmable Gate Array (FPGA) to move objects from a pick up location to a delivery location. This transportation of objects is done via a vehicle equipped with a robot arm and an FPGA. The path between the two locations is followed by recognizing a black line between them. The black line is sensed by Infrared sensors (IR) located on the front and on the back of the vehicle. The Robot was successfully implemented by programming the Field Programmable Gate Array with the designed system that was described as a state diagram and the robot operated properly.
In this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.