A novel Schiff base ligand [N1-benzylidenebenezene-1,2-diamine(L) = C20H16N2] was prepared through intensification of benzaldehyde (C6H5CHO) and O- amino aniline O-C6H4(NH2)2 in ethanol with 8-Hydroxyquinoline (8HQ) . Formed compounds were acquired of 1:1:2 molar proportion reactions for metal ions and ligands (L) and 2(8HQ) during reaction for MCl2 .nH2O salt products complexes conformable into the forms [M(L)(8HQ)2] ,where M = Mn(II),Co(II) and Ni(II). Whole the compounds were identified during the basis of their; FT-IR and U.V spectrum, melting point, molar conduct, identify of the percentage from the metal at the complexes via flame (AAS), C, H and N content of the Schiff base (L) and metal complexes were analysis and magnetic susceptibility menstruations. A hexagonal coordinated metal complexes were proposed to the separated complexes of Mn(II),Co(II) and Ni(II) with the Molecule formulas following on the nature from prepared ligand (L) and (8HQ) existent. The propose geometry from the complexes shows into be octahedral. In order that estimate the influence from the biological efficiency, these composition complexes in comparison with the Schiff base (L), 8HQ and metal complexes have been checked up versus bacterial species (gram +ve) and (gram -ve) as well as versus fungi the consequence are notified.
In this research, Schiff bases derived from the reaction of anthrone with different heterocyclic amines have been described. The resulted Schiff base compounds were reacted with various nucleophiles in order to obtain new heterocyclic derivatives. Chemical structures of all products were confirmed by IR, 1H-, 13C-NMR spectral data and elemental analysis. All synthesized compounds were in vitro tested against a standard strain of pathogenic microorganism including Gram +ve bacteria (Staphylococcus aureus), Gram –ve bacteria (Escherichia coli), and fungi (Candida albicans).
A new Schiff base of 4- flourophenyl-4- nitrobenzyliden (L) ,was prepared and used to prepare a number of metal complexes with Cr (III) , Fe (III), Co(II) ,Ni (II) and Cu (II). These complexes were isolated and characterized by (FITR),UV-Vis spectroscopy and flame atomic absorption techniques in addition to magnetic susceptibility, and conductivity measurements. The study of the nature of the complexes formed in ethanol was done following the molar ratio method gave results, agreed with those obtained from isolated solid state studies. The antibacterial activity for the ligand and its metal complexes were examined against two selected microorganisms, Pseudomonas aeruginosa and Staphylococcus aureus.The results indicated that the complexes
... Show MoreA new series of Fe (III) , Co (II) , Ni (II) and Cu (II) complexes of the Schiff base, 5 (2-hydroxy benzylidine) -2-thio ether -1, 3, 4-thiadiazole were prepared and characterized .The imine behaves as a bidentate. The nature of bonding and the stereochemistry of the complexes were deduced from metal analyses, infrared, electronic spectra,magnetic susceptibility and conductivity measurements, an octahedral geometry was suggested for all complexes except the copper complex has a square planar geometry .preliminary in vitro tests for antimicrobial activity show that all the prepared compounds except iron complex display good activity to gram positive Staphelococcus aures and gram negative Escherchia coli.
This work includes the synthesis and identification of ligand {3-((4-acetylphenyl)amino)-5,5-dimethylcyclohex2-en-1-one} (HL* ) by the treatment of 5,5-dimethylcyclohexane-1,3-dione with 4-aminoacetophenone under reflux. The ligand (HL* ) was identified via FTIR, Mass spectrum, elemental analysis (C.H.N.), 1H and 13C-NMR spectra, UV-Vis spectroscopy, TGA and melting point. The complexes were synthesized from ligand (HL* ) mixed with 3-aminophenol (A) and metal ion M(II), where M(II) = (Mn, Co, Ni, Cu, Zn and Cd) at alkaline medium to produce complexes of general formula [M(L* )(A)] with (1:1:1) molar ratio. These complexes were detected via FT-IR spectra, UV-Vis spectroscopy as well as elemental analysis (A.A) and melting point, conductivit
... Show MoreThis work includes the synthesis and identification of ligand {3-((4-acetylphenyl)amino)-5,5-dimethylcyclohex2-en-1-one} (HL* ) by the treatment of 5,5-dimethylcyclohexane-1,3-dione with 4-aminoacetophenone under reflux. The ligand (HL* ) was identified via FTIR, Mass spectrum, elemental analysis (C.H.N.), 1H and 13C-NMR spectra, UV-Vis spectroscopy, TGA and melting point. The complexes were synthesized from ligand (HL* ) mixed with 3-aminophenol (A) and metal ion M(II), where M(II) = (Mn, Co, Ni, Cu, Zn and Cd) at alkaline medium to produce complexes of general formula [M(L* )(A)] with (1:1:1) molar ratio. These complexes were detected via FT-IR spectra, UV-Vis spectroscopy as well as elemental analysis (A.A) and melting point, conductivit
... Show MoreA new series of Sulfamethoxazole derivatives was prepared and examined for antifibrinolytic and antimicrobial activities. Sulfamethoxazole derivatives bear heterocyclic moieties such as 1,3,4-thiadiazine {3}, pyrazolidine-3,5-diol {4} 6-hydroxy-1,3,4-thiadiazinane-2-thione {5} and [(3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-4-yl)diazenyl] {8}. Their structures were elucidated by spectral methods (FT-IR, H1-NMR). Physical properties are also determined for all compound derivatives. Recently prepared compounds were tested for their antimicrobial activity in the laboratory. Each screened compound showed good tendency to moderate antimicrobial activity.
Steady natural and mixed convection flow in a square vented enclosure filled with water-saturated aluminum metal foam is numerically investigated. The left vertical wall is kept at constant temperature and the remaining walls are thermally insulated. Forced convection is imposed by providing an inlet at cavity bottom surface, and a vent at the top surface. Natural convection takes place due to the temperature difference inside the enclosure. Darcy-Brinkman-Forchheimer model for fluid flow and the two-equation of the local thermal non-equilibrium model for heat flow was adopted to describe the flow characteristics within the porous cavity. Numerical results are obtained for a wide range of width of the inlet as a fraction
... Show More