Preferred Language
Articles
/
mRi5Z5UBVTCNdQwCgC24
Experimental and Numerical Behavior of Encased Pultruded GFRP Beams under Elevated and Ambient Temperatures
...Show More Authors

In this research, experimental and numerical studies were carried out to investigate the performance of encased glass-fiber-reinforced polymer (GFRP) beams under fire. The test specimens were divided into two peer groups to be tested under the effect of ambient and elevated temperatures. The first group was statically tested to investigate the monotonic behavior of the specimens. The second group was exposed to fire loading first and then statically tested to explore the residual behavior of the burned specimens. Adding shear connectors and web stiffeners to the GFRP beam was the main parameter in this investigation. Moreover, service loads were applied to the tested beams during the fire. Utilizing shear connectors, web stiffeners, and both enhanced the load-carrying capacities of the encased beams by 100.6%, 97.3%, and 130.8%, respectively. Comparisons between the burned and unburned peer beams were presented with losses in the load-carrying capacity of the burned beams. These losses were the highest in the cases of shear connectors and web stiffeners due to the obtained severe damage, which led to more reductions in the residual behavior of the burned beams. Numerical analyses were performed using the general-purpose finite element (FE) ABAQUS package to conduct a parametric study. The investigated parameters included the effect of the exposure duration and the temperature level. The results of the FE analysis showed good agreement with the experimental results. Additional reductions in the residual capacities of the fire-damaged beams were observed due to exposure to longer fire durations. The improvements in the beam capacities due to using shear connectors and web stiffeners relative to the reference beams under the same exposure time decreased as the exposure duration increased. Furthermore, increasing the temperature to 700 °C, 800 °C, 900 °C, and 950 °C caused reductions in the residual capacities by about 25%, 45%, 70%, and 80%, respectively, for the encased beams in comparison to their peers at ambient temperature.

Scopus Clarivate Crossref
Publication Date
Fri Sep 30 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Experimental Study and Mathematical Modelling of Zinc Removal by Reverse Osmosis Membranes
...Show More Authors

In this study, aromatic polyamide reverse osmosis membranes were used to remove zinc ions from electroplating wastewater. Influence of different operating conditions such as time, zinc concentration and pressure on reverse osmosis process efficiency was studied. The experimental results showed, concentration of zinc in permeate increase with increases of time from 0 to 70 min, and flux of water through membrane decline with time. While, the concentrations of zinc in permeate increase with the increase in feed zinc concentration (10–300 mg/l), flux decrease with the increment of feed concentration. The raise of pressure from 1 to 4 bar, the zinc concentration decreases and the flux increase. The highest recovery percentage was found is 54.

... Show More
Preview PDF
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Photo Degradation of Solochrom Violet Dye by ZnO: Experimental and Theoretical Study
...Show More Authors

The present project involves photodegrading the dye solochrom violet under advanced oxidation techniques at (25 oC) temperature and UV light. Zinc Oxide (ZnO) and UV radiation at a wavelength of 580 nm were used to conduct the photocatalytic reaction of the solochrom violet dye. One of the factors looked into was the impact of the starting conditions. pH, the amount of original hydrogen peroxide, and the dye concentration time radiation were used. For hours, the kinetics and percentages of degradation were examined at various intervals. In general, it has been discovered that the photodegradation rates of the dye were greater when H2O2 and ZnO were combined with UV light. The best wavelength to use was determined. Modern oxidation techni

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
THEORETICAL AND EXPERIMENTAL STUDY ON THERMAL PERFORMANCE OF CLOSED WET COOLING TOWER
...Show More Authors

Thermal performance of closed wet cooling tower has been investigated experimentally and theoretically
in this work. The theoretical model based on heat and mass transfer equations and heat and mass transfer balance equations which are established for steady state case. A new small indirect cooling tower was used for conducting experiments. The cooling capacity of cooling tower is 1 kW for an inlet water temperature of 38oC, a water mass velocity 2.3 kg/m2.s and an air wet bulb temperature of 26oC. This study investigates the relationship between saturation efficiency, cooling capacity and coefficient of performance of closed wet cooling tower versus different operating parameters such wet-bulb temperature, variable air-spray water fl

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 30 2003
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Physical and Rheological Properties of Class "G" Gilsonite Cement Slurries (Experimental Study)
...Show More Authors

View Publication Preview PDF
Publication Date
Tue Nov 01 2016
Journal Name
Journal Of Engineering
Experimental Investigations on the Strength and Serviceability of Biaxial Hollow Concrete Slabs
...Show More Authors

Biaxial hollow slab is a reinforced concrete slab system with a grid of internal spherical voids included to reduce the self-weight. This paper presents an experimental study of behavior of one-way prestressed concrete bubbled slabs. Twelve full-scale one-way concrete slabs of (3000mm) length with rectangular cross-sectional area of (460mm) width and (150mm) depth. Different parameters like type of specimen (solid or bubbled slabs), type of reinforcement (normal or prestress), range of PPR and diameter of plastic spheres (100 or 120mm) are considered. Due to the using of prestressing force in bubbled slabs (with ratio of plastic sphere diameter D to slab thickness H, D/H=0.67), the specimens showed an increase in ultimat

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 07 2024
Journal Name
Civileng
Experimental and FE Investigations of Backfill Cover on Large-Diameter GRP Pipes
...Show More Authors

This paper presents experimental investigations on buried Glass Reinforced Plastic (GRP) pipes with a diameter of 1400 mm. The tested pipes were buried in dense, gravelly sand and subjected to traffic loads to study the effects of backfill cover on pipe deflection. The experimental program included tests on three GRP pipes with backfill covers of 100 cm, 75 cm, and 50 cm. The maximum traffic loads applied to the pipe–soil system corresponded to Iraqi Truck Type 3 (AASHTO H type). Vertical deflections of the pipes were monitored during the application of these loads. The experimental results showed that, as the backfill cover increased, the maximum vertical deflection of the pipe decreased. Deflection reductions were 38.0% and 33.3

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Thermal Modeling of Solar Still Coupled with Heat Pipes and Experimental Validation
...Show More Authors

Water is the basis of the existence of all kinds of life, so obtaining it with good quality represents a challenge to human existence and development especially in the desert and remote cities because these areas contain small populations and water purification requires great materials and huge amounts of fossil fuels resulting pollution of the environment. Cheap and environmentally friendly desalination methods have been done by using solar distillations. Passive solar stills have low yields, so in this research, the problem is overcome by connecting four heat pipes which are installed on the parabolic concentrator reflector with passive solar still to increase the temperature of hot water to more than 90°C, as a resul

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 11 2025
Journal Name
Journal Of Engineering
Experimental Investigation of Nano Alumina and Nano Silica on Strength and Consistency of Oil Well Cement
...Show More Authors

View Publication
Publication Date
Sun Nov 26 2017
Journal Name
Journal Of Engineering
Experimental Investigation of Nano Alumina and Nano Silica on Strength and Consistency of Oil Well Cement
...Show More Authors

In oil and gas well cementing, a strong cement sheath is wanted to insure long-term safety of the wells. Successful completion of cementing job has become more complex, as drilling is being done in highly deviated and high pressure-high temperature wells. Use of nano materials in enhanced oil recovery, drilling fluid, oil well cementing and other applications is being investigated. This study is an attempt to investigate the effect of nano materials on oil well cement properties. Two types of nano materials were investigated, which are Nano silica (>40 nm) and Nano Alumina (80 nm) and high sulfate-resistant glass G cement is used. The investigated properties of oil well cement included compressive strength, thickening

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 14 2014
Journal Name
Molecular Crystals And Liquid Crysta
Synthesis and Mesomorphic Behavior of Two New Homologous Series Containing Azobenzene and 1,3,4-Oxadiazole Units
...Show More Authors

Two new nonsymmetrical mesogenic homologous series of terminal substituent ether (series [Vn]) and carboxy (series [VIn]) incorporating azobenzene and 1,3,4-oxadiazole group were synthesized. Both series have been All compounds thus isolated were purified and characterized by elemental analysis, Fourier Transform Infrared Spectroscopy, 1H NMR, along with thermal analysis and texture observation using Differential Scanning Calorimetry (DSC) and Polarizing Optical Microscopy (POM), respectively. All compounds of the first series exhibited liquid crystalline properties. The homologues [V1]-[V3] display a nematic mesophase, the compounds [V4]-[V7] exhibit a dimorphism behavior, nematic (N) and smectic A (SmA) mesophases, the compounds [V8] and

... Show More