Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You only look once”) neural network algorithm, which is an efficient real-time object identification algorithm, an intelligent system was developed in this thesis to distinguish which faces are wearing a mask and who is not wearing a wrong mask. The proposed system was developed based on data preparation, preprocessing, and adding a multi-layer neural network, followed by extracting the detection algorithm to improve the accuracy of the system. Two global data sets were used to train and test the proposed system and worked on it in three models, where the first contains the AIZOO data set, the second contains the MoLa RGB CovSurv data set, and the third model contains a combined data set for the two in order to provide cases that are difficult to identify and the accuracy results that were obtained. obtained from the merging datasets showed that the face mask (0.953) and the face recognition system were the most accurate in detecting them (0.916).
Pregnant women who have rubella may potentially pass the infection on to their unborn offspring. A congenital rubella infection can result in a miscarriage, stillbirth, and congenital rubella syndrome. The only member of the Togaviridae family’s Rubivirus genus, the Rubella virus (RV) is a positive-polarity, single-stranded RNA virus genome surrounded by a lipoprotein envelope with spike-like, hemagglutinin-containing surface projections.The objective: to determine the Rubella virus (1E genotype) in pregnant woman and its relation to spontaneous miscarriage.Materials and methods. A total of 174 women which visited Al-Elweya Teaching Hospital, Baghdad, Iraq, were screened according to the following criteria: women with a history of
... Show MoreOut of 150 clinical samples, 50 isolates of Klebsiella pneumoniae were identified according to morphological and biochemical properties. These isolates were collected from different clinical samples, including 15 (30%) urine, 12 (24%) blood, 9 (18%) sputum, 9 (18%) wound, and 5 (10%) burn. The minimum inhibitory concentrations (MICs) assay revealed that 25 (50%) of isolates were resistant to gentamicin (≥16µg/ml), 22 (44%) of isolates were resistant to amikacin (≥64 µg/ml), 21 (42%) of isolates were resistant to ertapenem (≥8 µg/ml), 18 (36%) of isolates were resistant to imipenem (4- ≥16µg/ml), 43 (86%) of isolates were resistant to ceftriaxone (4- ≥64 µg/ml), 42 (84%) of isolates were resistant to ceftazidime (1
... Show MoreRecent advances in wireless communication systems have made use of OFDM technique to achieve high data rate transmission. The sensitivity to frequency offset between the carrier frequencies of the transmitter and the receiver is one of the major problems in OFDM systems. This frequency offset introduces inter-carrier interference in the OFDM symbol and then the BER performance reduced. In this paper a Multi-Orthogonal-Band MOB-OFDM system based on the Discrete Hartley Transform (DHT) is proposed to improve the BER performance. The OFDM spectrum is divided into equal sub-bands and the data is divided between these bands to form a local OFDM symbol in each sub-band using DHT. The global OFDM symbol is formed from all sub-bands together using
... Show MoreRecently, wireless charging based RF harvesting has interfered our lives [1] significantly through the different applications including biomedical, military, IoT, RF energy harvesting, IT-care, and RFID technologies. Wirelessly powered low energy devices become significantly essential for a wide spectrum of sensing applications [1]. Such devices require for low energy resources from sunlight, mechanical vibration, thermal gradients, convection flows or other forms of harvestable energy [2]. One of the emerging power extraction resources based on passive devices is harvesting radio frequency (RF) signals powers [3]–[5]. Such applications need devices that can be organized in very large numbers, so, making separate node battery impractical.
... Show MoreThe aim of advancements in technologies is to increase scientific development and get the overall human satisfaction and comfortability. One of the active research area in recent years that addresses the above mentioned issues, is the integration of radio frequency identification (RFID) technology into network-based systems. Even though, RFID is considered as a promising technology, it has some bleeding points. This paper identifies seven intertwined deficiencies, namely: remote setting, scalability, power saving, remote and concurrent tracking, reusability, automation, and continuity in work. This paper proposes the construction of a general purpose infrastructure for RFID-based applications (IRFID) to tackle these deficiencies. Finally
... Show MoreThe biometric-based keys generation represents the utilization of the extracted features from the human anatomical (physiological) traits like a fingerprint, retina, etc. or behavioral traits like a signature. The retina biometric has inherent robustness, therefore, it is capable of generating random keys with a higher security level compared to the other biometric traits. In this paper, an effective system to generate secure, robust and unique random keys based on retina features has been proposed for cryptographic applications. The retina features are extracted by using the algorithm of glowworm swarm optimization (GSO) that provides promising results through the experiments using the standard retina databases. Additionally, in order t
... Show MoreThe Cenomanian – Turronian sedimentary succession in the south Iraq oil fields, including Ahmadi, Rumaila, Mishrif and Khasib formations have undergone into high-resolution reservoir-scale genetic sequence stratigraphic analysis. Some oil-wells from Majnoon and West-Qurna oil fields were selected as a representative case for the regional sequence stratigraphic analysis. The south Iraqi Albian – Cenomanian – Turronian succession of 2nd-order depositional super-sequence has been analyzed based on the Arabian Plate chronosequence stratigraphic context, properly distinguished by three main chrono-markers (The maximum flooding surface, MFS-K100 of the upper shale member of Nahr Umr Formation, MFS-K140 of the upper Mishrif carbonate
... Show MoreInternet paths sharing the same congested link can be identified using several shared congestion detection techniques. The new detection technique which is proposed in this paper depends on the previous novel technique (delay correlation with wavelet denoising (DCW) with new denoising method called Discrete Multiwavelet Transform (DMWT) as signal denoising to separate between queuing delay caused by network congestion and delay caused by various other delay variations. The new detection technique provides faster convergence (3 to 5 seconds less than previous novel technique) while using fewer probe packets approximately half numbers than the previous novel technique, so it will reduce the overload on the network caused by probe packets.
... Show More