This study aimed to evaluate the effectiveness of a novel concrete-encased column (CE) using small circular steel tubes filled with cementitious grouting material (GFST) as the primary reinforcement instead of traditional steel bars. The research involved three different types of reinforcement: conventional steel bars, concrete-filled steel tubes with 30% of the reinforcement ratio of steel bars, and concrete-filled steel tubes with the same reinforcement ratio as steel bars. Twenty-four circular concrete columns were tested and categorized into six groups based on the type of reinforcement employed. Each group comprised four columns, with one subjected to concentric axial load, two subjected to eccentric axial load (with eccentricities of 25 mm and 50 mm, respectively), and one tested under lateral flexural loads. To validate the experimental results, finite element (FE) analysis was conducted using ABAQUS software version 6.14. The experimental findings for concentric load reveal that columns with the second type of reinforcement, concrete-filled steel tubes with 30% of the reinforcement ratio of steel bars exhibited a failure load 19% lower than those with steel bars, while columns with the third type of reinforcement, concrete-filled steel tubes with the same reinforcement ratio as steel bars achieved a failure load 17% greater than the traditional steel bars. The FE analysis demonstrates good agreement with the experimental outcomes in terms of ultimate strength, deformation, and failure modes.
To achieve sustainability, use waste materials to make concrete to use alternative components and reduce the production of Portland cement. Lime cement was used instead of Portland cement, and 15% of the cement's weight was replaced with silica fume. Also used were eco-friendly fibers (copper fiber) made from recycled electrical. This work examines the impact of utilizing sustainable copper fiber with different aspect ratios (l/d) on some mechanical properties of high-strength green concrete. A high-strength cement mixture with a compressive strength of 65 MPa in line with ACI 211.4R was required to complete the assignment. Copper fibers of 1% by volume of concrete were employed in mixes with four different aspect ratios
... Show MoreThe purpose of this research was to investigate the beneficial effects of phosphatidylcholine in reducing changes in both lipid and protein profiles in addition to atherogenic index in adult rats with fructose-induced metabolic syndrome. Thirty-six mature Wistar Albino female rats (Rattus norvegicus) (aged 12-15 weeks and weighing 200±10 g) were divided randomly into four groups (G1, G2, G3, and G4); then variable treatments were orally administered for 62 days as follows: G1 (Control group), received distilled water; G2, treated with phosphatidylcholine (PC) orally (1 g/kg BW); G3 (Fr), orally dosed with 40% fructose and 25% fructose mixed with drinking water; G4 (Fr+PC), were also intubated with 40% fr
... Show MoreThe corrosion behavior of carbon steel at different temperatures 100,120,140 and 160 Cͦ under different pressures 7,10 and 13 bar in pure distilled water and after adding three types of oxygen scavengers Hydroquinone, Ascorbic acid and Monoethanolamine in different concentrations 40,60 and 80 ppm has been investigated using weight loss method. The carbon steel specimens were immersed in water containing 8.2 ppm dissolved oxygen (DO) by using autoclave. It was found that corrosion behavior of carbon steel was greatly influenced by temperature with high pressure. The corrosion rate decreases, when adding any one of oxygen scavengers. The best results were obtained at a concentration of 80 ppm of each scavenger. It was observed that
... Show MoreWhen embankment is constructed on very soft soil, special construction methods are adopted. One of the techniques is a piled embankment. Piled (stone columns) embankments provide an economic and effective solution to the problem of constructing embankments over soft soils. This method can reduce settlements, construction time and cost. Stone columns provide an effective improvement method for soft soils under light structures such as rail or road embankments. The present work investigates the behavior of the embankment models resting on soft soil reinforced with stone columns. Model tests were performed with different spacing distances between stone columns and two lengths to diameter ratios of the stone columns, in addition to different
... Show MoreIn this paper, the probabilistic behavior of plain concrete beams subjected to flexure is studied using a continuous mesoscale model. The model is two-dimensional where aggregate and mortar are treated as separate constituents having their own characteristic properties. The aggregate is represented as ellipses and generated under prescribed grading curves. Ellipses are randomly placed so it requires probabilistic analysis for model using the Monte Carlo simulation with 20 realizations to represent geometry uncertainty. The nonlinear behavior is simulated with an isotropic damage model for the mortar, while the aggregate is assumed to be elastic. The isotropic damage model softening be
Recycled asphalt concrete mixture are prepared, artificially aged and processed in the laboratory to maintain the homogeneity of recycled asphalt concrete mixture gradation, and bitumen content. The loose asphalt concrete mix was subjected to cycle of accelerated aging, (short –term aging) and the compacted mix was subjected to (long -term aging) as per Super-pave procedure. Twenty four Specimens were constructed at optimum asphalt content according to Marshall Method. Recycled mixture was prepared from aged asphalt concrete using recycling agent (soft asphalt cement blended with silica fumes) by (1.5%) weight of mixture as recycling agent content. The effect of recycling agent on aging after recycling process behavior
... Show MoreIn this research study Hardness (shore D), Water absorption,
Flexural, Impact Test, and Fracture Toughness of polymer nano
composites. The polymer nano composites based on unsaturated
polyester resin reinforced with Kevlar fibers (K.F). The samples are
attended by hand lay – up method according to (Rule mixture) for
various volume fractions of unsaturated polyester resin, fiber and
carbon nanotube. The polyester resin was matrix strengthened with
3% volume fraction from Kevlar fiber and (0.5%, 1%, 1.5%, 2%)
volume fractions of carbon nanotube. The water absorption, hardness
(shore D), flexural test, impact test and toughness fracture properties
were studied. Results showed that the water absorption increas
The standard formulation of Wave Intensity Analysis (WIA) assumes that the flow velocity (U) in the conduit is <;<; the velocity of propagation of waves (c) in the system, and Mach number, M=U/c, is negligible. However, in the large conduit arteries, U is relatively high due to ventricular contraction and c is relatively low due to the large compliance; thus M is > 0, and may not be ignored. Therefore, the aim of this study is to identify experimentally the relationship between M and the reflection coefficient in vitro. Combinations of flexible tubes, of 2 m in length with isotropic and uniform circular cross sectional area along their longitudinal axes, were used to present mother and daughter tubes to produce a range of reflection coeffic
... Show MoreThe research problem lies in: The use of positive and negative flexibility exercises to develop the special strength of the 400m hurdles player, that some young people face weakness and a problem in performance, which requires the need to prepare special exercises for physical and skill numbers using the types of exercises that have resilient strength, flexibility and have the effect on developing and determining the level of physical and skill performance. To develop 400m hurdles, special strength, explosive power and the characteristic velocity of arms and legs. Research aims: 1. Preparing positive and negative flexibility exercises to develop the special force and the effectiveness of 400m youth barriers. 2. Identify the effect of exerci
... Show MoreForward-swept wings were researched and introduced to improve maneuverability, control, and fuel efficiency while reducing drag and they are often used alongside canards, to further enhance their characteristics. In this research, the effects of canard dihedral angles on the wing loading of a forward-swept wing in transonic flow conditions were studied, as the wing loading provides a measure of wing’s efficiency (lift/drag). A generic aircraft model from literatures was selected, simulated, and compared to, using CFD software ANSYS/Fluent where the flow equations were solved to calculate the aerodynamic characteristics. The research was carried at two different Mach numbers, 0.6 and 0.9, for five different canard dihedral angles which tra
... Show More