This study aimed to evaluate the effectiveness of a novel concrete-encased column (CE) using small circular steel tubes filled with cementitious grouting material (GFST) as the primary reinforcement instead of traditional steel bars. The research involved three different types of reinforcement: conventional steel bars, concrete-filled steel tubes with 30% of the reinforcement ratio of steel bars, and concrete-filled steel tubes with the same reinforcement ratio as steel bars. Twenty-four circular concrete columns were tested and categorized into six groups based on the type of reinforcement employed. Each group comprised four columns, with one subjected to concentric axial load, two subjected to eccentric axial load (with eccentricities of 25 mm and 50 mm, respectively), and one tested under lateral flexural loads. To validate the experimental results, finite element (FE) analysis was conducted using ABAQUS software version 6.14. The experimental findings for concentric load reveal that columns with the second type of reinforcement, concrete-filled steel tubes with 30% of the reinforcement ratio of steel bars exhibited a failure load 19% lower than those with steel bars, while columns with the third type of reinforcement, concrete-filled steel tubes with the same reinforcement ratio as steel bars achieved a failure load 17% greater than the traditional steel bars. The FE analysis demonstrates good agreement with the experimental outcomes in terms of ultimate strength, deformation, and failure modes.
As an alternative to Ordinary Portland Cement (OPC), the alkali-activated binders have been developed with better technical characteristics and more extended durability. The Alkali-Activated Iraqi Natural Pozzolans (AANP) could produce geopolymer cementation building materials and make them ecologically acceptable. The primary advantage of geopolymer cement is that it has a lower environmental effect that contributes to it. The engineering characteristics of geopolymer concrete produced using activated Iraqi natural Pozzolan are summarized in this research. The mechanical properties, modulus of elasticity, and ultrasonic pulse velocity of various concrete mixes were determined via experimental study. The impact of essential variables like w
... Show MoreConcrete structures is affected by a deleterious reaction, which is known as Alkali Aggregate Reaction (AAR). AAR can be defined as a chemical reaction between the alkali content in the pore water solution of the cement paste and reactive forms of silica hold in the aggregate. This internal reaction produces expansion and cracking in concrete, which can lead to loss of strength and stiffness. Carbon fiber-reinforced polymer (CFRP) is one of the methods used to suppress further AAR expansion and rehabilitate and support damaged concrete structures. In this research, thirty-six cylindrical specimens were fabricated from non-reactive and reactive concrete, which contained fused silica as
The disposal of the waste material is the main goal of this investigation by transformation to high-fineness powder and producing self-consolidation concrete (SCC) with less cost and more eco-friendly by reducing the cement weight, taking into consideration the fresh and strength properties. The reference mix design was prepared by adopting the European guide. Five waste materials (clay brick, ceramic, granite tiles, marble tiles, and thermostone blocks) were converted to high-fine particle size distribution and then used as 5, 10, and 15% weight replacements of cement. The improvement in strength properties is more significant when using clay bricks compared to other activated waste
The disposal of the waste material is the main goal of this investigation by transformation to high-fineness powder and producing self-consolidation concrete (SCC) with less cost and more eco-friendly by reducing the cement weight, taking into consideration the fresh and strength properties. The reference mix design was prepared by adopting the European guide. Five waste materials (clay brick, ceramic, granite tiles, marble tiles, and thermostone blocks) were converted to high-fine particle size distribution and then used as 5, 10, and 15% weight replacements of cement. The improvement in strength properties is more significant when using clay bricks compared to other activated waste
Roller compacted concrete (RCC) is a concrete compacted by roller compaction. The concrete mixture in its unhardened state must support a roller while being compacted. The aim of this research work was to investigate the behavior and properties of roller compacted concrete when constructed in the laboratory using roller compactor manufactured in local market to simulate the field conditions. The roller compaction was conducts in three stages; each stage has different loading and number of passes of the roller. For the first stage, a load of (24) kg and (5) passes in each direction had been employed. For the second stage, a load of (104) kg and (10) passes in each direction were conducted. Finally, at the third stage, a load of (183) kg a
... Show MoreBackground: Restoration of root canal treated teeth with a permanent restoration affect in the success of endodontically treated teeth. This in vitro study was performed to evaluate and compare the fracture strength of endodontically treated teeth restored by using custom made zirconium posts and cores, prefabricated carbon fiber, glass fiber and zirconium ceramic posts. Materials and method: Forty intact human mandibular second premolars were collected for this study and were divided into five groups. Each group contains 8 specimens: Group1: Teeth restored with Carbon Fiber Posts; Group2: Teeth restored with Glass Fiber Posts; Group3: Teeth restored with Zirconium Ceramic prefabricated Posts; Group4: Teeth restored with Zirconium Posts
... Show MoreThe accumulation of construction and demolition waste is one of the major problems in modern construction. Hence, this research investigates the use of waste brick in concrete. Seven different concrete mixes were investigated in this study: a control concrete mix, three mixes with volumetric replacement (10, 20, and 30)% of natural aggregate with brick aggregate, and two mixes with the addition of nano brick powder at a percentage level of 5– 10% by weight of cementitious materials. And the last one was mixed with 10% nano brick and 10% coarse brick aggregate. The experimental results for the additive of nano brick powder showed an enhancement in mechanical properties (compressive,
Background: The goal of a root canal treatment is three dimensional obturation with a complete seal of the root canal system. The aim of this study was to evaluate and compare the effect of two warm obturation techniques, warm vertical compaction (WVC) and, carrier based obturation technique Gutta Core (GC), versus two cold obturation techniques, cold lateral compaction (CLC) and, single cone (SC) on push-out bond strength of bioceramic sealer (Total Fill) at three different root levels. Materials and Methods: Forty extracted maxillary first molars teeth with a straight round palatal root canal and mature apices were selected for this study. After sectioning the palatal roots to 11 mm from the root apex, the canals were
... Show MoreBackground: The goal of a root canal treatment is three dimensional obturation with a complete seal of the root canal system. The aim of this study was to evaluate and compare the effect of two warm obturation techniques, warm vertical compaction (WVC) and, carrier based obturation technique Gutta Core (GC), versus two cold obturation techniques, cold lateral compaction (CLC) and, single cone (SC) on push-out bond strength of bioceramic sealer (Total Fill) at three different root levels. Materials and Methods: Forty extracted maxillary first molars teeth with a straight round palatal root canal and mature apices were selected for this study. After sectioning the palatal roots to 11 mm from the root apex, the canals were prepared wit
... Show More