Preferred Language
Articles
/
mRe9Zo4BVTCNdQwCbkZ3
Advanced Machine Learning application for Permeability Prediction for (M) Formation in an Iraqi Oil Field
...Show More Authors

Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy and the performance of the algorithms. The random forest algorithm was the most accurate method leading to lowest Root Mean Square Prediction Error (RMSPE) and highest Adjusted R-Square than multiple linear regression algorithm for both training and testing subset respectively. Thus, random Forest algorithm is more trustable in permeability prediction in non-cored intervals and its distribution in the geological model.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jul 09 2025
Journal Name
Journal Of Baghdad College Of Dentistry
A Clinical Method for Prediction of Alveolar Bone Mineral Density in the Area between the Second Premolar and First Molar in Iraqi Adults with Class I Occlusion
...Show More Authors

Background: Orthodontic mini-implants are increasingly used in orthodontics and the bone density is a very important factor in stabilization and success of mini-implant. The aim of this study was to observe the relationship among maximum bite force (MBF); body mass index (BMI); face width, height and type; and bone density in an attempt to predict bone density from these variables to eliminate the need for CT scan which have a highly hazard on patient. Materials and Methods: Computed tomographic (CT) images were obtained for 70 patients (24 males and 46 females) with age range 18-30 years. The maxillary and mandibular buccal cortical and cancellous bone densities were measured between 2nd premolar and 1st molar at two levels from the alveol

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 28 2021
Journal Name
Misan Journal For Physical Education Sciences
The Effectiveness of Using Generative Learning Model in Learning Kinetic Series on Rings and Horizontal Bar In Artistic Gymnastics for men
...Show More Authors

The aim of this study was to identify the effectiveness of using generative learning model in learning kinetic series on rings and horizontal bar in artistic gymnastics for men ,Also, the two groups were better in learning the two series of movements on the rings and horizontal bar . The experimental method was used to design two parallel groups with pretested and posttest .The sample included third graders at the College of Physical Education and Sports Sciences - University of Baghdad ,The third class (d) was chosen to represent the control group that applied the curriculum in the college, with (12) students per group. After conducting the tribal tests, the main experiment was carried out for (8) weeks at the rate of two units per week di

... Show More
Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Oil spill classification based on satellite image using deep learning techniques
...Show More Authors

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Sun Mar 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Design of Horizontal Well Program for Ajeel Field
...Show More Authors

Horizontal wells are of great interest to the petroleum industry today because they provide an attractive means for improving both production rate and recovery efficiency. The great improvements in drilling technology make it possible to drill horizontal wells with complex trajectories and extended for significant depths.
The aim of this paper is to present the design aspects of horizontal well. Well design aspects include selection of bit and casing sizes, detection of setting depths and drilling fluid density, casing, hydraulics, well profile, and construction of drillstring simulator. An Iraqi oil field (Ajeel field) is selected for designing horizontal well to increase the productivity. Short radius horizontal well is suggested fo

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
The Mediator Role of Workplace Spirituality in The Relationship Between Psychological Capital and Entrepreneurial Behavior: Field Research in the center of the Iraqi Ministry of Oil
...Show More Authors

Abstract

      The research aims to identify the mediator role of  workplace spirituality in the  relationship between psychological capital and entrepreneurial  behavior: field research to a sample opinions from employees at the center of the Iraqi ministry of Oil . The importance of the current research emerged from paucity of studies that have attempted to identify and know the nature of the relationship between the variables as well as trying to find the current address and realistic problem directly affects the performance of employees in the Iraqi oil sector.

 In order to achieve the goal of research the use of the analytical method (quantitative)

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Journal Of Computational And Theoretical Nanoscience
Feasibility of Internet of Things Application for Real-Time Healthcare for Malaysian Pilgrims
...Show More Authors

Internet of Things (IoT) technology could be an effective solution to accomplish real-time retrieval of historical electronic health records (EHRs) to present better service of healthcare. In a pilgrimage environment such as the Hajj, IoT can be applied by identifying the non-local patients as electronic tags, and the tag data can be read by wireless sensors. The data that is collected using Radio-Frequency Identification (RFID) can be acquired from a Wireless Sensor Network (WSN) in order to accomplish many decisions, such as sending an ambulance to a patient’s location, sending an emergency alert to his immediate family circle, and retrieving his EHR from a database. The main contribution of this research is to propose a conceptual IoT

... Show More
View Publication
Scopus (8)
Crossref (4)
Scopus Crossref
Publication Date
Fri Jul 30 2021
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
EEG Motor-Imagery BCI System Based on Maximum Overlap Discrete Wavelet Transform (MODWT) and Machine learning algorithm
...Show More Authors

The ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communi

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Tue Nov 19 2024
Journal Name
Aip Conference Proceedings
CT scan and deep learning for COVID-19 detection
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Generative Adversarial Network for Imitation Learning from Single Demonstration
...Show More Authors

Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref