Preferred Language
Articles
/
mRe9Zo4BVTCNdQwCbkZ3
Advanced Machine Learning application for Permeability Prediction for (M) Formation in an Iraqi Oil Field
...Show More Authors

Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy and the performance of the algorithms. The random forest algorithm was the most accurate method leading to lowest Root Mean Square Prediction Error (RMSPE) and highest Adjusted R-Square than multiple linear regression algorithm for both training and testing subset respectively. Thus, random Forest algorithm is more trustable in permeability prediction in non-cored intervals and its distribution in the geological model.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 06 2024
Journal Name
Journal Of Ecological Engineering
Using Machine Learning Algorithms to Predict the Sweetness of Bananas at Different Drying Times
...Show More Authors

The consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying

... Show More
Preview PDF
Scopus (4)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Post COVID-19 Effect on Medical Staff and Doctors' Productivity Analysed by Machine Learning
...Show More Authors

The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (13)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Intelligent Systems
A study on predicting crime rates through machine learning and data mining using text
...Show More Authors
Abstract<p>Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o</p> ... Show More
View Publication
Scopus (10)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Nov 03 2008
Journal Name
All Days
Correlations for Optimum Separation Pressures for Sequential Field Separation System
...Show More Authors
ABSRACT<p>A study has been done to find the optimum separators pressures of separation stations. Stage separation of oil and gas is accomplished with a series of separators operating at sequentially reduced pressures. Liquid discharged from a higher pressure separator into the lower pressure separator. The set of working separators pressures which yield maximum recovery of liquid hydrocarbon from the well fluid is the optimum set of pressures which is the target of this work.</p><p>Computer model is used to find the optimum separators pressures. The model employs the Peng-Robinson equation of state for volatile oil. Application of this model shows good improvement of al</p> ... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
The Use of the Regression Tree and the Support Vector Machine in the Classification of the Iraqi Stock Exchange for the Period 2019-2020
...Show More Authors

 The financial markets are one of the sectors whose data is characterized by continuous movement in most of the times and it is constantly changing, so it is difficult to predict its trends , and this leads to the need of methods , means and techniques for making decisions, and that pushes investors and analysts in the financial markets to use various and different methods in order to reach at predicting the movement of the direction of the financial markets. In order to reach the goal of making decisions in different investments, where the algorithm of the support vector machine and the CART regression tree algorithm are used to classify the stock data in order to determine

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Matec Web Of Conferences
Permittivity and Permeability Characterization of SiC and Ferro Metals for Structural Health Monitoring Utilization
...Show More Authors

The need for wireless sensing technology has rapidly increased recently, specifically the usage of electromagnetic waves which becoming more required as a source of information. Silicon carbide (SiC) Nano particles has been used in this study, the material under test (MUT) was exposed directly to a microwave field to examine the electromagnetic behavior. The permittivity and permeability were investigated with different filler materials to approach best and optimal electromagnetic absorbing characteristics to assist engineers to monitor structure-based composite for defects evaluation that may occur during operation conditions or through manufacturing process. XRD, FESEM and both complex permittivity and permeability were measured f

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Thu Nov 03 2022
Journal Name
Sensors
A Novel Application of Deep Learning (Convolutional Neural Network) for Traumatic Spinal Cord Injury Classification Using Automatically Learned Features of EMG Signal
...Show More Authors

In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi

... Show More
View Publication
Scopus (9)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Fri Jan 07 2022
Journal Name
International Journal Of Early Childhood Special Education
Hierarchical learning and its effect on learning some basic skills in fencing for third stage students.
...Show More Authors

MH Hamzah, AF Abbas, International Journal of Early Childhood Special Education, 2022

View Publication
Publication Date
Tue Feb 26 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Role Lean Accounting in Support Corporate Governance to Achieve a Competitive Advantage: An Application Study in Diala State Company for Electrical industrial
...Show More Authors

        The modern business environment has witnesses tremendous developments as a result of the globalization of markets and economic openness and technological as well as the acquisition of the issue of corporate governance of great importance regarding it as one of the global innovations trends of control provisions on the management of companies as result of these developments ,increasing on competition between economic unit ,thus a decrease in market share because they do not take into account the response to the requirements of customers ,which kept her to search a modern management accounting methods to help them keep up with the changes and the availability of information for the various adminis

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 02 2019
Journal Name
Journal Of Educational And Psychological Researches
An Instructional Design According to the Active Learning Model and Its Effect on Students' Achievement in Chemistry for Fifth Intermediate Stage
...Show More Authors

The objective of the research is to identify the effect of an instructional design according to the active learning modelsالباحثين in the achievement of the students of the fifth grade, the instructional design was constructed according to the active learning models for the design of education. The research experience was applied for a full academic year (the first & the second term of 2017-2018). The sample consisted of 58 students, 28 students for the experimental group and 30 students for the control group. The experimental design was adopted with partial and post-test, the final achievement test consisted of (50) objectives and essays items on two terms, the validity of the test was verified by the adoption of the Kudoric

... Show More
View Publication Preview PDF