Preferred Language
Articles
/
mRe9Zo4BVTCNdQwCbkZ3
Advanced Machine Learning application for Permeability Prediction for (M) Formation in an Iraqi Oil Field

Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy and the performance of the algorithms. The random forest algorithm was the most accurate method leading to lowest Root Mean Square Prediction Error (RMSPE) and highest Adjusted R-Square than multiple linear regression algorithm for both training and testing subset respectively. Thus, random Forest algorithm is more trustable in permeability prediction in non-cored intervals and its distribution in the geological model.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Proceedings Of International Conference On Computing And Communication Networks
Automatic Health Speech Prediction System Using Support Vector Machine

View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Simplified Novel Approach for Accurate Employee Churn Categorization using MCDM, De-Pareto Principle Approach, and Machine Learning

Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date.  A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science (ijeecs)
A new smart approach of an efficient energy consumption management by using a machine-learning technique

Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s

... Show More
Crossref
Publication Date
Tue Mar 20 2018
Journal Name
Day 2 Wed, March 21, 2018
Numerical Approach for the Prediction of Formation and Hydraulic Fracture Properties Considering Elliptical Flow Regime in Tight Gas Reservoirs
Abstract<p>As tight gas reservoirs (TGRs) become more significant to the future of the gas industry, investigation into the best methods for the evaluation of field performance is critical. While hydraulic fractured well in TRGs are proven to be most viable options for economic recovery of gas, the interpretation of pressure transient or well test data from hydraulic fractured well in TGRs for the accurate estimation of important reservoirs and fracture properties (e.g. fracture length, fracture conductivity, skin and reservoir permeability) is rather very complex and difficult because of the existence of multiple flow profiles/regimes. The flow regimes are complex in TGRs due to the large hydraulic fractures n</p> ... Show More
View Publication
Scopus (11)
Crossref (7)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes In Networks And Systems
Using Machine Learning to Control Congestion in SDN: A Review

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Jan 11 2022
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Permeability Enhancement of Methotrexate Transdermal Gel using Eucalyptus oil, Peppermint Oil and Olive Oil(Conference Paper )#

Abstract

Objective: the idea of this study to improve transdermal permeability of Methotrexate using eucalyptus oil, olive oil and peppermint oil as enhancers.
Method: eucalyptus oil (2% and 4%), peppermint oil (2% and 4%) and olive oil (2% and 4%) all used as natural enhancers to develop transdermal permeability of Methotrexate via gel formulation. The gel was subjected to many physiochemical properties tests. In-vitro release and permeability studies for the drug were done by Franz cell diffusion across synthetic membrane, kinetic model was studied via korsmeyer- peppas equation.
Result: the results demonstrate that safe, nonirritant or cause necrosis to rats' skin and stable till 60 days gel was successfully formulated.<

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Comparative Study between Different Oil Production Enhancement Scenarios in an Iraqi Tight Oil Reservoir

This paper presents a comparative study between different oil production enhancement scenarios in the Saadi tight oil reservoir located in the Halfaya Iraqi oil field. The reservoir exhibits poor petrophysical characteristics, including medium pore size, low permeability (reaching zero in some areas), and high porosity of up to 25%. Previous stimulation techniques such as acid fracturing and matrix acidizing have yielded low oil production in this reservoir. Therefore, the feasibility of hydraulic fracturing stimulation and/or horizontal well drilling scenarios was assessed to increase the production rate. While horizontal drilling and hydraulic fracturing can improve well performance, they come with high costs, often accounting for up t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Advanced Study of Promoted Pt /SAPO-11 Catalyst for Hydroisomerization of the n-Decane Model and Lube Oil

   SAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and  LHSV 0.5-2h-1.  The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Advanced Study of Promoted Pt /SAPO-11 Catalyst for Hydroisomerization of the n-Decane Model and Lube Oil

SAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and  LHSV 0.5-2h-1.  The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1. Meanwhile, the same catalyst was used to improve base oil spec

... Show More
Crossref (1)
Crossref