Abstract This research investigates how activated carbon (AC) was synthesized from potato peel waste (PPW). Different ACs were synthesized under the atmosphere's conditions during carbonation via two activation methods: first, chemical activation, and second, carbon dioxide-physical activation. The influence of the drying period on the preparation of the precursor and the methods of activation were investigated. The specific surface area and pore volume of the activated carbon were estimated using the Brunauer–Emmett–Teller method. The AC produced using physical activation had a surface area as high as 1210 m2/g with a pore volume of 0.37 cm3/g, whereas the chemical activation had a surface area of 1210 m2/g with a pore volume of 0.34 cm3/g. The main aim of this research is to produce activated carbon from natural materials and to prepare and characterize the elemental analysis, surface area, and morphological properties of ACs from potato peel waste using potassium hydroxide (KOH) AC-PPK and Carbon dioxide (CO2) ACPPC as activating agents. X-ray diffraction analysis showed the degree of crystallinity to be 35.03% in the case of AC-PPK, and AC-PPC showed a crystallinity of 35.46%. In both methods, the results showed that the crystallographic structure revealed that all the synthesized AC took on an amorphous state with low crystallinity. The atomic force microscopy (AFM) image of AC shows the presence of nanotips on the surface and shows that the maximum height was 1396 nm and 778 nm. The outer surfaces are full of cavities and highly irregular as a result of activation. The morphological analysis of the precursors was determined by scanning electron microscopy. The external surfaces are full of cavities and quite irregular as a result of activation. Also, activated carbon prepared from potato peel waste is a low-cost and effective adsorbent when compared with several activated carbon sources.
In this work, the nano particles of Na-A zeolite were synthesized by sol –gel method. The samples were characterized by X-ray diffraction (XRD), X-ray luorescence (XRF), Surface area and pore volume, Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy (FTIR). Results show that the nano A zeolite is with average crystal size is 74.77 nm., Si/Al ratio 1.03, BET surface area was 581.211m2/g and the pore volume for NaA was found equal to 0.355cm3/g.
Feasibility of biosorbent of England bamboo plant origin was tested for removal of priority metal ions such as Cu and Zn from aqueous solutions in single metal state. Batch single metal state experiments were performed to determine the effect of dosage (0.5, 1 and 1.5 g), pH (3, 4, 4.5, 5 and 6), mixing speed (90, 111, 131, 156 and 170 rpm), temperature (20, 25, 30 and 35 °C) and metal ion concentration (10, 50, 70, 90 and 100 mg/L) on the ability of dried biomass to remove metal from solutions which were investigated. Dried powder of bamboo removed (for single metal state) about 74 % Cu and 69% Zn and maximum uptake of Cu and Zn was 7.39 mg/g and 6.96 mg/g respectively, from 100 mg/L of synthetic metal solution in 120 min. of contact t
... Show MoreThe genus Larra Fabricius, 1793 (Hymenoptera: Crabronidae) is recorded for the first time from Vietnam. Three species and two subspecies belonging to this genus as follows: L. amplipennis (F. Smith, 1873); L. carbonaria (F. Smith, 1858); L. fenchihuensis Tsuneki, 1967; L. polita polita (F. Smith, 1858) and L. polita luzonensis Rohwer, 1919 are presented. Keys to both sexes of the three species and two subspecies reported here are provided.
Endophytic bacteria produced analogous secondary metabolites of their hosts. Similarly, the ability to generate antioxidants is not an exception. Dragon scales (Pyrrosia piloselloides), an epiphytic plant of the Polypodiaceae family, are frequently overlooked. This research aims to isolate antioxidant-producing bacteria from dragon-scale fern leaves. The antioxidant activities were tested after the extraction procedure using ethanolic extract. Bacteria were characterized and selected as candidates for antioxidant production by screening for the production of total phenolic compounds. Antioxidant levels were determined utilizing the ABTS, FRAP, and DPPH techniques. The preliminary findings of the entire phenolic compound test rev
... Show MoreTwenty purified isolates were obtained by using different soil sources, only twelve isolates belonging to Aspergillus genera depending on cultural and morphological characterization. The isolates were used as alkaline protease producer. The highest proteolytic, enzymatic activity (95.83U/ml) was obtained from
Fifteen local isolates of Pseudomonas were obtained from several sources such as soil, water and some high-fat foods (Meat, olives, coconuts, etc.). The ability of isolates to produce lipase was measured by the size of clear zone on Tween 20 solid medium and by measuring the enzymatic activity and specific activity. Isolate M3 (as named in this study) was found to be the most efficient for the production of the lipase with enzymatic activity reached 56.6 U/ml and specific activity of 305.94 U/mg. This isolate was identified through genetic analysis of the 16S rRNA gene. and it was shown that the isolate M3 belongs to Pseudomonas aeruginosa with 99% similarity. The DNA of isolate M3 was extracted and lipase gene was amplified through PCR tec
... Show More2-hydrazinylbenzo[d]thiazole compound [1] is produced from reaction of 2-mercapto-benzothiazole with hydrazine hydride in ethanol. Compound [1] reacted with maleic anhydride in DMF to produce (Z)-4-(2-(benzo[d] thiazol-2yl) hydrazinyl)-4-oxobut-2-enoic acid [compound (2)]. While the treatment of compound [2] with the ammonium persulfate (NH4)2S2O8 (as the initiator) in order to produce compound [3], then compound [3] reacted with thionyl chloride in benzene to produce compound [4], finally compound [4] reaction with various drugs: cephalexin, amoxicillin, sulfamethizole, elecoxib obtained polymers [5–8]. The structure of synthesized compounds identified by spectral data: fourier transform infrared (FTIR) and proton nuclear magneti
... Show More