The estimation of the initial oil in place is a crucial topic in the period of exploration, appraisal, and development of the reservoir. In the current work, two conventional methods were used to determine the Initial Oil in Place. These two methods are a volumetric method and a reservoir simulation method. Moreover, each method requires a type of data whereet al the volumetric method depends on geological, core, well log and petrophysical properties data while the reservoir simulation method also needs capillary pressure versus water saturation, fluid production and static pressure data for all active wells at the Mishrif reservoir. The petrophysical properties for the studied reservoir is calculated using neural network technique from 13 cored and logged wells. The results showed that the reservoir simulation method gave a value of Initial Oil in Place that agrees and close to the value of Initial Oil in Place obtained from the volumetric method with a percentage different around 2%. However, the estimation of Initial Oil in Place by reservoir simulation method offered accurate results during good history matching with observed data as well as making appropriate adjusting for Pc vs. Sw values for the whole reservoir from October 1976 until December2020. MB21 unit own most Initial Oil in Place equal to 525*106 SM3 while MB12 has lowest IOIP equal to 2*106 SM3. Finally, the calculation of Initial Oil in Place by both volumetric and simulation methods presented good results while comparing with previous study at 2013 with discovered different around 1.5% and 0.6% respectively.
This study focused on spectral clustering (SC) and three-constraint affinity matrix spectral clustering (3CAM-SC) to determine the number of clusters and the membership of the clusters of the COST 2100 channel model (C2CM) multipath dataset simultaneously. Various multipath clustering approaches solve only the number of clusters without taking into consideration the membership of clusters. The problem of giving only the number of clusters is that there is no assurance that the membership of the multipath clusters is accurate even though the number of clusters is correct. SC and 3CAM-SC aimed to solve this problem by determining the membership of the clusters. The cluster and the cluster count were then computed through the cluster-wise J
... Show MoreThe automatic estimation of speaker characteristics, such as height, age, and gender, has various applications in forensics, surveillance, customer service, and many human-robot interaction applications. These applications are often required to produce a response promptly. This work proposes a novel approach to speaker profiling by combining filter bank initializations, such as continuous wavelets and gammatone filter banks, with one-dimensional (1D) convolutional neural networks (CNN) and residual blocks. The proposed end-to-end model goes from the raw waveform to an estimated height, age, and gender of the speaker by learning speaker representation directly from the audio signal without relying on handcrafted and pre-computed acou
... Show MorePoly (3-hydroxybutyrate) (PHB) is a typical microbial bio-polyester reserve material; known as “green plastics”, which produced under controlled conditions as intracellular products of the secondary metabolism of diverse gram-negative/positive bacteria and various extremophiles archaea. Although PHB has properties allowing being very attractive, it is too expensive to compete with conventional and non-biodegradable plastics. Feasibility of this research to evaluate the suitability of using a watermelon-derived media as an alternative substrate for PHB synthesis under stress conditions was examined. Results, include the most nutrients extraction, indicated that the watermelon seeds contain a high content of nutrients makes them a promisi
... Show MoreThis work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show MoreThis research proposes the application of the dragonfly and fruit fly algorithms to enhance estimates generated by the Fama-MacBeth model and compares their performance in this context for the first time. To specifically improve the dragonfly algorithm's effectiveness, three parameter tuning approaches are investigated: manual parameter tuning (MPT), adaptive tuning by methodology (ATY), and a novel technique called adaptive tuning by performance (APT). Additionally, the study evaluates the estimation performance using kernel weighted regression (KWR) and explores how the dragonfly and fruit fly algorithms can be employed to enhance KWR. All methods are tested using data from the Iraq Stock Exchange, based on the Fama-French three-f
... Show MoreThe dispersion of supported Pt and Pt–Ir reforming catalysts have been studied, after treatment with oxidative and reducing atmosphere. Methylcyclohexane dehydrogenation reaction in the absence of hydrogen was used as a test reaction. An attempt was made to relate the behavior of the catalysts upon subject to reaction, to the dispersion of the same type of catalysts upon treatment with similar atmosphere and temperatures which appeared in literature. The total conversion of reaction can be explained by a change in metal dispersion. Thus, methylcyclohexane dehydrogenation reaction appears to be a really “structure sensitive” reaction.
The toluene yield increases as the oxidation temperature i
... Show More