A mathematical model was proposed to study the microkinetics of esterification reaction of oleic acid with ethanol over prepared HY zeolite catalyst. The catalyst was prepared from Iraqi kaolin source and its properties were characterized by different techniques. The esterification was done under different temperature (40 to 70˚C) with 6:1 for molar ratio of ethanol to oleic acid and 5 % catalyst loading. The microkinetics study was done over two period of time each period was examined individually to calculate the reaction rate constant and activation energy. The impact of the mass transfer resistance to the reactant was also investigated; two different studies have been accomplished to do this purpose. The effect of the external mass transfer resistance was studied by exploring different stirring speed (400 to 800 rpm). The results show that, the oleic acid conversion increase with increasing the stirring speed until reached 600 rpm, after this rpm the conversion doesn’t increase significantly, which mean that, the effect of external mass transfer resistance was eliminated. The activation energy for the first period is equal to 41.84 kJ/mol while in the second period is equal to 52.03 kJ/mol. The Thiele modulus calculation results show that there is no effect of mass transfer on the reaction inside the catalyst pores.
Three types of zeolite A were prepared from Iraqi kaoline which are 3A, 4A and 5A by ion exchange method .They were characterized by XRD and atomic absorption techniques .They were used as adsorbents to examine their applicability for H2S adsorption .The adsorption process was performed in a static form and constant volume system which constructed from stainless steel .The effect of zeolite type and temperature on the adsorption properties of H2S at -5 , 25 and 55 oC was studied .The zeolite type 5A has the highest adsorption value (79.384 µmol/g ) and the three types may be arranged in a sequence toward H2S adsorption as 5 A> 4A>3A .The amount of H2S adsorbed increased as temperature decreased from 55 to -5 for all samples. Langmuir , Fre
... Show MoreAtorvastatin have problem of very slightly aqueous solubility (0.1-1 mg/ml). Nano-suspension is used to enhance it’s of solubility and dissolution profile. The aim of this study is to formulate Atorvastatin as a nano-suspension to enhance its solubility due to increased surface area of exposed for dissolution medium, according to Noyes-Whitney equation.
Thirty one formulae were prepared to evaluate the effect of ; Type of polymer, polymer: drug ratio, speed of homogenization, temperature of preparation and inclusion of co-stabilizer in addition to the primary one; using solvent-anti-solvent precipitation method under high power of ultra-sonication.
... Show MoreThe corrosion inhibition effect of a new furan derivative (furan-2-ylmethyl sulfanyl acetic acid furan-2-ylmethylenehydrazide) on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR) and potentiodynamic polarization. The obtained results indicated that the new furan derivative (furan-2-ylmethyl sulfanyl acetic acid furan-2-ylmethylenehydrazide) (FSFD) has a promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. The density functional theory (DFT) study was performed on the new furan derivative (FSFD) at the B3LYP/6-311G (d, p) basis set level to explore the relation between their inhibition efficiency and molecular electro
An annular two-phase, steady and unsteady, flow model in which a conductingfluid flow under the action of magnetic field is concavely. Two models arepresented, in the model one; the magnetic field is perpendicular to the long side ofthe channel, while in the model two is perpendicular to the short side. Also, westudy, to some extent the single-phase liquid flow.It is found that the motion and heat transfer equations are controlled by differentdimensionless parameters namely, Reynolds, Hartmann, Prandtl, and Poiseuilleparameters. The Laplace transform technique is used to solve each of the motion andheat transfer equations. The effects of each of dimensionless parameters upon thevelocity and heat transfer is analyzed.A comprehensive study fo
... Show MoreIntegration of laminar bubbling flow with heat transfer equations in a novel internal jacket airlift bioreactor using microbubbles technology was examined in the present study. The investigation was accomplished via Multiphysics modelling to calculate the gas holdup, velocity of liquid recirculation, mixing time and volume dead zone for hydrodynamic aspect. The temperature and internal energy were determined for heat transfer aspect.
The results showed that the concentration of microbubbles in the unsparged area is greater than the chance of large bubbles with no dead zones being observed in the proposed design. In addition the pressure, due to the recirculation velocity of liquid around the draft
... Show MoreThin films of highly pure (99.999%) Tellurium was prepared by high vacuum technique (5*10-5torr), on glass substrates .Thin films have thickness 0.6m was evaporated by thermal evaporation technique. The film deposited was annealed for one hour in vacuum of (5*10-4torr) at 373 and 423 K. Structural and electrical properties of the films are studies. The x-ray diffraction of the film represents a poly-crystalline nature in room temperature and annealed film but all films having different grain sizes. The d.c. electrical properties have been studied at low and at relatively high temperatures and show that the conductivity decreases with increasing temperature at all range of temperature. Two types of conduction mechanisms were found to d
... Show MoreThin a-:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As), and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on value
... Show MoreBaTiO3 thin films have been deposited on Si (111) and glass substrates by using pulsed laser deposition technique. The films were characterized by using X-ray diffraction, atomic force microscope and optical transmission spectra. The films growth on Si after annealing at 873K showed a polycrystalline nature, and exhibited tetragonal structure, while on glass substrate no growth was noticed at that temperature. UV-VIS transmittance measurements showed that the films are highly transparent in the visible wavelength region and near-infrared region for sample annealing on glass substrate. The optical gap of the film were calculated from the curve of absorption coefficient (αhν) 2 vs. hν and was found tobe 3.6 eV at substrate temperature 5
... Show More