A mathematical model was proposed to study the microkinetics of esterification reaction of oleic acid with ethanol over prepared HY zeolite catalyst. The catalyst was prepared from Iraqi kaolin source and its properties were characterized by different techniques. The esterification was done under different temperature (40 to 70˚C) with 6:1 for molar ratio of ethanol to oleic acid and 5 % catalyst loading. The microkinetics study was done over two period of time each period was examined individually to calculate the reaction rate constant and activation energy. The impact of the mass transfer resistance to the reactant was also investigated; two different studies have been accomplished to do this purpose. The effect of the external mass transfer resistance was studied by exploring different stirring speed (400 to 800 rpm). The results show that, the oleic acid conversion increase with increasing the stirring speed until reached 600 rpm, after this rpm the conversion doesn’t increase significantly, which mean that, the effect of external mass transfer resistance was eliminated. The activation energy for the first period is equal to 41.84 kJ/mol while in the second period is equal to 52.03 kJ/mol. The Thiele modulus calculation results show that there is no effect of mass transfer on the reaction inside the catalyst pores.
Trickle bed reactor was used to study the hydrogenation of nitrobenzene over Ni/SiO2 catalyst. The catalyst was prepared using the Highly Dispersed Catalyst (HDC) technique. Porous silica particles (capped cylinders, 6x5.5 mm) were used as catalyst support. The catalyst was characterized by TPR, BET surface area and pore volume, X-ray diffraction, and Raman Spectra. The trickle bed reactor was packed with catalyst and diluted with fine glass beads in order to decrease the external effects such as mass transfer, heat transfer and wall effect. The catalyst bed dilution was found to double the liquid holdup, which increased the catalyst wetting and hence, the gas-liquid mass transfer rate. The main product of the hydrogenation reaction of n
... Show MoreThis work targeted studying organogel as a potential floating system. Organgel has an excellent viscoelastic properties, floating system posses a depot property. Different formulations of 12-hydroxyoctadecanoic acid (HOA) in sesame oil were gelled and selecting F1, F3 and F5 HOA organogels for various examinations: tabletop rheology, optical microscopy, and oscillatory rheology studies. Also, the floating properties studies were conducted at in vitro and in-vivo levels. Lastly, the in-vitro release study using cinnarizine (CN) was to investigate the organogel depot property. Based on the results, the selected concentrations of HOA in sesame oil organogels showed temperature transitions fr
... Show MoreTwo samples of (Ag NPs-zeolite) nanocomposite thin films have been prepared by easy hydrothermal method for 4 hours and 8 hours inside the hydrothermal autoclave at temperatures of 100°C. The two samples were used in a photoelectrochemical cell as a photocatalyst inside a cell consisting of three electrodes: the working electrode photoanode (AgNPs-zeolite), platinum as a cathode electrode, and Ag/AgCl as a reference electrode, to study the performance of AgNPs-zeolite under dark current and 473 nm laser light for water splitting. The results show the high performance of an eight-hour sample with high crystallinity compared with a four-hour sample as a reliable photocatalyst to generate hydrogen for renewable energies.
The Cu2SiO3 composite has been prepared from the binary compounds (Cu2O, and SiO2) with high purity by solid state reaction. The Cu2SiO3 thin films were deposited at room temperature on glass and Si substrates with thickness 400 nm by pulsed laser deposition method. X-ray analysis showed that the powder of Cu2SiO3 has a polycrystalline structure with monoclinic phase and preferred orientation along (111) direction at 2θ around 38.670o which related to CuO phase. While as deposited and annealed Cu2SiO3 films have amorphous structure. The morphological study revealed that the grains have granular and elliptical shape, with average diameter of 163.63 nm. The electrical properties which represent Hall effect were investigated. Hall coeffici
... Show MoreThe kinetics of nickel removal from aqueous solutions using a bio-electrochemical reactor with a packed bed rotating cylinder cathode was investigated. The effects of applied voltage, initial nickel concentration, the rotation speed of the cathode, and pH on the reaction rate constant (k) were studied. The results showed that the cathodic deposition occurred under mass transfer control for all values of the applied voltage used in this research. Accordingly, the relationship between concentration and time can be represented by a first-order equation. The rate constant was found to be dependent on the applied voltage, initial nickel concentration, pH, and rotation speed. It was increased as the applied voltage increased and decreased as t
... Show MoreIn this study a polymeric composite material was prepared by hand
lay-up technique from epoxy resin as a matrix and magnesium oxide
(MgO) as a reinforcement with different weight fraction (5,10,15,
and 20)% to resin. Then the prepared samples were immersed under
normal condition in H2So4(1 M) solution, for periods ranging up to
10 weeks. The result revealed that the diffusion coefficient
decreasing as the concentration of MgO increase. Also we studied
Hardness for the prepared samples before and after immersion. The
result revealed that the hardness values increase as the concentration
of MgO increase, while the hardness for the samples after immersion
in H2SO4 dec
In medical practice, nonsteroidal anti-inflammatory drugs (NSAIDs) are often used to treat osteoarthritis and rheumatoid arthritis. Ibuprofen is a well-known NSAID, analgesic, and antipyretic medication. This chemical is an active ingredient of several oral medications that are offered in tablet, gel pellet, and syrup forms and has higher efficacy, tolerance, and side effect rates than other compounds, including pyrazolone derivatives. We present a unique plasma-assisted desorption/ionization mass spectrometry (PADI-MS) approach for improving pharmaceutically important solids using an ibuprofen tablet as a model solid sample. The goal of the study is to create an innovative mass spectrometric method that could be used for quick and accur
... Show More
