This work is aimed to design a system which is able to diagnose two types of tumors in a human brain (benign and malignant), using curvelet transform and probabilistic neural network. Our proposed method follows an approach in which the stages are preprocessing using Gaussian filter, segmentation using fuzzy c-means and feature extraction using curvelet transform. These features are trained and tested the probabilistic neural network. Curvelet transform is to extract the feature of MRI images. The proposed screening technique has successfully detected the brain cancer from MRI images of an almost 100% recognition rate accuracy.
The brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition s
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreFace recognition is a type of biometric software application that can identify a specific
individual in a digital image by analyzing and comparing patterns. It is the process of
identifying an individual using their facial features and expressions.
In this paper we proposed a face recognition system using Stationary Wavelet Transform
(SWT) with Neural Network, the SWT are applied into five levels for feature facial
extraction with probabilistic Neural Network (PNN) , the system produced good results
and then we improved the system by using two manner in Neural Network (PNN) and
Support Vector Machine(SVM) so we find that the system performance is more better
after using SVM where the result shows the performance o
Evolutionary·co.nipimit'iQo is a· c'!a s of glbbal ·searb techniq
based on the lei.lffi:ing process ,of g po_pl)'latiog-·of pote.n:tiaf solutions to
a ven probl_e-ID'. thahas .been succe_ssfull'y applied 19 v ety of
prQblern, lll thls paper a riew approach to. design lie_ ural ne'twQj:ks
based oh ev.ohltipnary -computa.tio.rt i·s pre.Seri-L _A tine-f.!£ clurP.mosome
'repr:esentati:on or the etwor}< i_s. u_secl: 'Q.y genetiC gperntb_l:s, whicQ
allow th¢ voJution of.the chitecture and' weight-s Â
... Show MoreContext has a significant impact on the interpretation of Qur'anic and literary texts, especially in ancient Arabic poetry since that language is no longer considered as a contemporary understandable language. Hence this research is entitled: (the impact of context on the morphological semantics in the Diwan of Abi Al-Aswad Al-Dau’ali) and the morphological meanings indicated by the morphological formula which lack the combination of other contextual clues. The researcher depended on the analytical approach to show the impact of pairing occurring between the contextual elements on determining the morphological meaning.
The most important findings reached at:
1- Context has a great impact in dispelling the possibilities arising fr
In light of the increasing interest in Child-rearing in nurseries and kindergartens and the most important experiences gained by the child at this stage that form the basis for the subsequent stages of her/his physical mental and social growth.
The significance of the research concentrates the need to asses the affecting variables on the child growth to create opportunities for her/him to have intact rearing.
The research also aims to classify these variables at each age level and highlight its moral role.
The problem of the research is the lack of clarity of different variables impact of the child growth in different age levels in nurseries and kindergart
... Show MoreThe main purpose of this investigation is to evaluate the concentrations of six essential metals (Na+, Mg2+, K+, Ca2+, Fe2+ and Zn2+) in saffron and a farm soil using the neutron activation analysis (NAA) as a nuclear spectrometry method. The stratified random sampling method was used here. The NAA results showed the well uptake of Mg2+, K+, Ca2+, Fe2+, and Zn2+ in saffron, which is lower than the toxicity range. Based on the contamination factor and geoaccumulation index, soil contamination levels were determined uncontaminated by Zn, moderately contaminated by Na+ and Fe2+, and strongly contamin
... Show MoreAerial manipulation of objects has a number of advantages as it is not limited by the morphology of the terrain. One of the main problems of the aerial payload process is the lack of real-time prediction of the interaction between the gripper of the aerial robot and the payload. This paper introduces a digital twin (DT) approach based on impedance control of the aerial payload transmission process. The impedance control technique is implemented to develop the target impedance based on emerging the mass of the payload and the model of the gripper fingers. Tracking the position of the interactional point between the fingers of gripper and payload, inside the impedance control, is achieved using model predictive control (MPD) approach.
... Show MoreIn this paper, the deterministic and the stochastic models are proposed to study the interaction of the Coronavirus (COVID-19) with host cells inside the human body. In the deterministic model, the value of the basic reproduction number determines the persistence or extinction of the COVID-19. If , one infected cell will transmit the virus to less than one cell, as a result, the person carrying the Coronavirus will get rid of the disease .If the infected cell will be able to infect all cells that contain ACE receptors. The stochastic model proves that if are sufficiently large then maybe give us ultimate disease extinction although , and this facts also proved by computer simulation.