Preferred Language
Articles
/
mRZkzIsBVTCNdQwCmN97
Employ Mathematical Model and Neural Networks for Determining Rate Environmental Contamination
...Show More Authors

Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Determining the Quality and Quantity of Bioethanol Production using Golden Shower (Cassica fistula) Fruit
...Show More Authors

Depletion of fossil fuel is one of the main reasons why the bioethanol has become popular. It is a renewable energy source. In order to meet the great demand of bioethanol, it is best that the bioethanol production is from cheap raw materials. Since the golden shower fruit is not being utilized and is considered as waste material, hence, this study was conducted to make use of the large volume of the residue as feedstock to test its potential for bioethanol extraction.The main goal of this study is to obtain the most volume of bioethanol from the golden shower fruit liquid residue by the factors, days of fermentation (3, 5, and 7 days) and sugar concentration (15, 20 and 25 brix) of the liquid residue. Also, part of the study is to compu

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
A proposed model program to audit the contribution of municipal institutions to achieving the environmental dimension of sustainable development "applied research"
...Show More Authors

Abstract

               The research aimed to prepare an audit program focusing on the activities of municipal institutions related to the environmental dimension as one of the dimensions of sustainable development, and applying the program for the purpose of preparing an oversight report related to assessing the impact of the activities of municipal institutions on the environmental reality as the main channel through which municipal institutions contribute to achieving the part related to it. Among the requirements of sustainable development, the proposed program was prepared and applied to the institutions affiliated to the Directorate of Mu

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 28 2018
Journal Name
Iraqi Journal Of Science
Hypothetical Method for Gamma Dose Rate Assessment to Conditioned Radioactive waste Container
...Show More Authors

Metallic solid radioactive waste class low level - short lived Radioactive Waste

(LL-SL RW) is the main type of radioactive waste generated from decommissioning operations. Transport, storage and disposal regulations require for gamma emitting radioactive waste (mainly by 137Csisotope), that the dose rate in the proximity of the container should stand below a certain threshold. Also, the conditioning technique (using cementation technique) based on certain matrix with specific ratios should be able to attenuate the gamma radiation activity to the minimum level or to acceptable dosage rate at distance of 1m from the container. In this paper ,in absence of suitable labs for waste package assessment ,hypothetical method&n

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 23 2019
Journal Name
Baghdad Science Journal
Hazard Rate Estimation Using Varying Kernel Function for Censored Data Type I
...Show More Authors

     In this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used:  local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Study the Variation of Gamma - Ray Backscattered Count Rate for Halley’s Nucleus
...Show More Authors

In this paper, the single scatter model for gamma backscatter densitometer has been used to investigate the materials of Halley’s nucleus. Monte Carlo simulation tool is used for the evaluation and calibration of gamma backscatter densitometer; and also used to calculate the bulk density. A set of parameters effecting detected count rate of γ – ray backscattering, mainly the source energy, the source – detector separation (sonde length), density and composition, were calculated.
Results obtained with the present method are compared with experimental data and the computed data may be considered entirely satisfactory.

View Publication Preview PDF
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
Tuning PID Controller by Neural Network for Robot Manipulator Trajectory Tracking
...Show More Authors

Ziegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio

... Show More
View Publication Preview PDF
Publication Date
Mon May 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Effect of Number of Training Samples for Artificial Neural Network
...Show More Authors

 In this paper we study the effect of the number of training samples for  Artificial neural networks ( ANN ) which is necessary for training process of feed forward neural network  .Also we design 5 Ann's and train 41 Ann's which illustrate how good the training samples that represent the actual function for Ann's.

View Publication Preview PDF
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Designing Feed Forward Neural Network for Solving Linear VolterraIntegro-Differential Equations
...Show More Authors

The aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.

View Publication Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection
...Show More Authors

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (4)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Iaes International Journal Of Artificial Intelligence
Reduced hardware requirements of deep neural network for breast cancer diagnosis
...Show More Authors

Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref