In this study water quality index (WQI) was calculated to classify the flowing water in the Tigris River in Baghdad city. GIS was used to develop colored water quality maps indicating the classification of the river for drinking water purposes. Water quality parameters including: Turbidity, pH, Alkalinity, Total hardness, Calcium, Magnesium, Iron, Chloride, Sulfate, Nitrite, Nitrate, Ammonia, Orthophosphate and Total dissolved solids were used for WQI determination. These parameters were recorded at the intakes of the WTPs in Baghdad for the period 2004 to 2011. The results from the annual average WQI analysis classified the Tigris River very poor to polluted at the north of Baghdad (Alkarkh WTP) while it was very poor to very polluted in the south (Alrasheed WTP). WQI reached a maximum value of 912 at Alwathba WTP in 2011and 602 at Alqadisia in 2009 (WTPs at the center part of Baghdad). This classification considers the river unfit for drinking water purposes. Eight color maps of the river were constructed by GIS all gave clear images of the water quality along the river. GIS helped to join the calculated WQI in such an organized and scientific allowing decision making easier to solve pollution problems.
Sodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-201
... Show MoreThe natural radioactivity levels in water samples along the Tigris river (one of the major rivers of the world) within Baghdad city were investigated to determine and evaluate the radioactivity risks in the water of the river. The specific activity of the radionuclides (238U, 232Th, 40K, and 137Cs) for thirty different water samples from Tigris river within Baghdad city were measured using gamma-ray spectrometer, employing a NaI(Tl) scintillation detector. The results showed that the average value of the specific activity for 238U, 232Th, 40K, and 137Cs were (24.20, 16.70, 329.22, and 19.40) Bq/l, respectively. The calculated average annual effec
... Show MoreThe present study deals with the assessment of water Quality Index to theAl-
Khadhimiya Groundwater city, by collection groundwater from 13wells during four
seasons, subjecting the samples to a comprehensive physicochemical analysis. The
13 parameters have been considered: pH, total hardness, calcium, magnesium,
turbidity, nitrate, electrical conductivity, total dissolved solid, Sulfate, Chloride,
zinc, manganic, and iron, that are used for calculating the WQI. From the result
shown, the most groundwater quality lies in Unfit for human drinking purpose. The
wells (1 and 11) and wells (3 and 10) were a bad water quality for drinking purpose
since they lie in poor and in very poor respectively according to the WQI.
The alteration in the hydrological regime in Iraq and the anthropogenic increasing effect on water quality of a lotic ecosystems needs to continuous monitoring. This work is done to assess the water quality of Tigris River within Baghdad City. Five sites were selected along the river and ten physicochemical parameters and Overall Index of Pollution (OIP) were applied to assess the water quality for the period between November 2020 and May 2021, the studied period were divided into dry and wet seasons. These parameters were water temperature, pH, dissolved oxygen (DO), biological oxygen demand (BOD), total hardness, alkalinity, turbidity, total phosphorus, total nitrogen, electrical co
The aim of the research is the detection of heavy metals using (Inductively coupled Plasma ICP) for samples in Tigris river at intakes of water treatment plants Baghdad (Sharq dejla, Al-Wathba, Al-Wahda, and Al-Dora) and samples at Tigris banks near (Al-Adhamya, Al-Shuhda bridge and al-Jadrya).
All the recorded results were fitted with Iraqi standers No. 25 in 1967 for all samples with heavy metals (arsenic Ar, Cadmium Cd, Chromium Cr, Zinc Zn, Lead Pb, Copper Cu, Nickel Ni, Manganese Mn, Ferrous Fe) where all concentration were lower than standard values except Cadmium (0.01- 0.014) in plants intakes and (0.027- 0.048) in river samples while the standard value is (0.005).
Other tests such as chemical oxygen demand and oil &
Water quality of Al-Gharraf River, which considered the main branch of Tigris River south of Iraq was examined using the Canadian Council of Ministers of the Environment Water Quality Index (CCME-WQI) for aquatic life protection and irrigation. Water samples were collected monthly from five sampling stations during 2013-2014 and 17 physicochemical parameters were analyzed: Temperature, hydrogen ion concentration (pH), electrical conductivity, dissolved oxygen, turbidity, alkalinity, chloride, calcium, magnesium, sulfate, phosphate, nitrate, sodium, lead, cadmium, nickel and zinc.
The model classified water of Al-Gharraf River as poor for aquatic life protection and fair for irrigation with seasonal overall WQI value of 30-39 and among
This study was conducted to investigate the effects of Al-Rasheed power plant (RPP) effluents at Al-Zafaraniya city on the physical – chemical of the Tigris River by using Canadian Water Quality Index(CCME WQI).Water samples were taken monthly at four positions and 11parameters were analyzed . The results of this study conducted that there was a significant impact of the RPP effluents on increase of water temperature, turbidity and electrical conductivity, and there was an increase in the phosphate concentration and water hardness at station 2 and the model classified water of Tigris river as poor in winter and fair to marginal in rest season for drinking and aquatic life
The multimetric Phytoplankton Index of Biological Integrity (P-IBI) was applied throughout Rostov on Don city (Russia) on 8 Locations in Don River from April – October 2019. The P-IBI is composed from seven metrics: Species Richness Index (SRI), Density of Phytoplankton and total biomass of phytoplankton and Relative Abundance (RA) for blue-green Algae, Green Algae, Bacillariophyceae and Euglenaphyceae Algae. The average P-IBI values fell within the range of (45.09-52.4). Therefore, water throughout the entire study area was characterized by the equally "poor" quality. Negative points of anthropogenic impact detected at the stations are: Above the city of Rostov-on-Don (1 km, higher duct Aksai) was 38.57 i
... Show MoreFlooding hazard is an important and dangerous natural phenomenon that leads to significant material losses. It should be studied and scenario to prevent significant losses. The studies should consider the impact of many factors such as human, infrastructure, economic,..etc. The main objective of the research is the risk management procedure. The study was conducted in Baghdad, Iraq. The materials for completing this research were prepared by gathering a satellite image and Digital Elevation Model (DEM) via the USGS website, then processed, analyzed, and converted into a different flood region concerning the probability of rising water levels where the normal height of Baghdad city is 28m over sea level. This scenario defines 3m,
... Show More