Background: Patients with type 2 diabetes have an increased prevalence of lipid abnormalities, contributing to their high risk of cardiovascular diseases (CVD).Glycated hemoglobin (HbA1c) is a routinely used marker for long-term glycemic control. In accordance with its function as an indicator for the mean blood glucose level, HbA1c predicts the risk for the development of diabetic complications in diabetic patients[2].Apart from classical risk factors like dyslipidemia, HbA1c has now been regarded as an independent risk factor for (CVD) in subjects with or without diabetes.Objective The aim of this study was to find out association between glycaemic control (HbA1c as a marker) and serum lipid profile in type 2 diabetic patients.Methods
... Show MoreThe present study was performed on 80 female subjects between (30-60) years, who attended the Specialized Center for Endocrinology and Diabetes during the period from April to July; 2011. The subjects were divided into 3 groups : controls , non diabetic autoimmune thyroid patients , and non diabetic autoimmune thyroid patient with renal diseases as complication The results showed a significant increase in serum T 3 T4 levels in hyperthyroidism patients, and significant decrease in serum T3,T4 levels in hypothyroidism patients ,while a significant difference in serum TSH levels in hyperthyroidism and hypothyroidism patients when compared to control group The results show also a significant increase in serum antibodies to thyroid peroxidas
... Show MoreIntroduction: Cardiovascular diseases are the main cause of death among type 2 diabetic patients. Higher levels of plasminogen activator urokinase receptor have been found to predict morbidity and mortality across acute and chronic diseases in the common populace. This study aims to explore the role of serum plasminogen activator urokinase receptor levels as a cardiometabolic risk factor among type 2 diabetic Iraqi patients. Methods: Seventy type 2 diabetic patients (40 male and 30 female) (mean age: 46.20±7.56 years) participated in this study; 35 patients were with cardiovascular disease and 35 were without cardiovascular disease; their ages range was 40-55 years. In addition, 30 individuals who apparently healthy were selected a
... Show MoreNo-fine concrete (NFC) is cellular concrete and it’s light weight concrete produced with the exclusion of sand from the concrete. This study includes the mechanical properties of lightweight reinforced by steel fiber, containing different proportions of steel fiber. This study was done using number of tests. These tests were density, compressive strength, flexural strength and absorption. These tests of the molds at different curing time. The results of tests that implication of fiber to No. fine concrete did not affect significantly on the compressive strength, While the flexural strength were gets better. Results explained that, the flexural strength of (1%) fiber No- fine concrete molds are four times that of the reference mold
... Show MoreIn this study, plastic wastes named (PET and PVC) were used to prepare polymer matrix composite (PMC) which can be used in different applications. Composite materials were prepared by mixing unsaturated polyester resin (UP) with plastic wastes, two types of plastic waste were used in this work included polyethylene-terephthalate (PET) and Polyvinyl chloride (PVC) with various weight fractions (0, 5,10,15, 20 and 25%) added as a filler in flakes form. In this work, some of the tests that were carried out included (tensile, bending, and compressive strength) as mechanical tests, in addition to (thermal conductivity and water absorption) as physical tests. The values of tensile, compressive strength and Young's modulus of UP increased after
... Show MoreThe electrical properties of the AlNiCo thin films with thickness (1000oA) deposited on glass substrates using Ion – Beam sputtering (IBS) technique under vacuum <10-6 torr have been studied . Also it studied the effect of annealing temperature from this films , It is found that the effective energy decrease with increase of temperature and the conductivity decrease with increase temperature 323oK but after this degree the conductivity increasing .
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
