The standard formulation of Wave Intensity Analysis (WIA) assumes that the flow velocity (U) in the conduit is <;<; the velocity of propagation of waves (c) in the system, and Mach number, M=U/c, is negligible. However, in the large conduit arteries, U is relatively high due to ventricular contraction and c is relatively low due to the large compliance; thus M is > 0, and may not be ignored. Therefore, the aim of this study is to identify experimentally the relationship between M and the reflection coefficient in vitro. Combinations of flexible tubes, of 2 m in length with isotropic and uniform circular cross sectional area along their longitudinal axes, were used to present mother and daughter tubes to produce a range of reflection coefficients. An approximately semi-sinusoidal pulse was generated at the inlet of the mother tube using a syringe pump, first in the condition of initial velocity, U 0 =0, and when U 0 >0 with steady flow to superimpose the pulse. Pressure (P) and Velocity (U) were measured in the mother tube, wave speed was determined using the foot to foot and PU-loops methods. The theoretical reflection coefficient, R t at M=0, has been compared to the experimental reflection coefficient, R at M>0, which was determined as dP-/dP+ as calculated using WIA. The function R(M) changes significantly with the geometrical and mechanical features of the connected tubes. In our experiments, R increased significantly with small values of M. In the range of M=0-0.02, R increased by 4-36%. Therefore, we conclude that M significantly affects the magnitude of reflections.
Breast cancer constitutes about one fourth of the registered cancer cases among the Iraqi population (1)
and it is the leading cause of death among Iraqi women (2)
. Each year more women are exposed to the vicious
ramifications of this disease which include death if left unmanaged or the negative sequels that they would
experience, cosmetically and psychologically, after exposure to radical mastectomy.
The World Health Organization (WHO) documented that early detection and screening, when coped
with adequate therapy, could offer a reduction in breast cancer mortality; displaying that the low survival rates
in less developed countries, including Iraq, is mainly attributed to the lack of early detection programs couple
A prepared PMMA/Anthracene film of thickness 70μm was irradiated under reduced pressure ~10-3 to 60Coγ-ray dose of (0.1mrad-10krad) range. The optical properties of the irradiated films were evaluated spectrophotometrically. The absorption spectrum showed induced absorption changes in the 200-400nm range. At 359nm, where there is a decrease in radiation-induced absorption, the optical density as a function of absorbed dose is linear from 10mrad-10Krad.It can therefore, be used as radiation dosimeter for gamma ray in the range 10mrd-10krad
We present a simple model of charge transfer current through sensitizer N3 molecule contact to TiO2 and ZnO semiconductors to calculate the charge transfer current. The model underlying depends on the fundamental parameters of the charge transfer reaction and it is based on the quantum transition theory approach. A transition energy, driving energy and potential barrier have been taken into account charge transfer current at N3 / TiO2 and N3 / ZnO devices with wide polarity solvents Acetic acid, 2-Methoxyethanol, 1-Butanol, Methyl alcohol, chloroform, N,N-Dimethylacetamide and Ethyl alcohol via the quantum donor-acceptor system.The effects of the transition energy and potential barrier are computed and discussion on charge transfer current.
... Show MoreThe nuclear matter density distributions, elastic electron scattering charge formfactors and root-mean square (rms) proton, charge, neutron and matter radii arestudied for neutron-rich 6,8He and 19C nuclei and proton-rich 8B and 17Ne nuclei. Thelocal scale transformation (LST) are used to improve the performance radial wavefunction of harmonic-oscillator wave function in order to generate the long tailbehavior appeared in matter density distribution at high . A good agreement resultsare obtained for aforementioned quantities in the used model.
In this paper, the complexes of Shiff base of Methyl -6-[2-(diphenylmethylene)amino)-2-(4-hydroxyphenyl)acetamido]-2,2-dimethyl-5-oxo-1-thia-4-azabicyclo[3.2.0]heptane-3-carboxylate (L) with Cobalt(II), Nickel(II), Cupper(II) and Zinc(II) have been prepared. The compounds have been characterized by different means such as FT-IR, UV-Vis, magnetic moment, elemental microanalyses (C.H.N), atomic absorption, and molar conductance. It is obvious when looking at the spectral study that the overall complexes obtained as monomeric structure as well as the metals center moieties are two-coordinated with octahedral geometry excepting Co complexes that existed as a tetrahedral geometry. Hyper Chem-8.0.7
... Show More(3) (PDF) Theoretical investigation of charge transfer at N3 sensitized molecule dye contact with TiO2 and ZnO semiconductor. Available from: https://www.researchgate.net/publication/362773606_Theoretical_investigation_of_charge_transfer_at_N3_sensitized_molecule_dye_contact_with_TiO2_and_ZnO_semiconductor [accessed May 01 2023].
New metal ions complexes of tridentate ligand (1-((dicyclohexylamino) methyl)-3-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrzol-4-ylimino) indolin-2-one) have been synthesized and characterized by chemical-physical analysis. The ligand acts as a tridentate for the complexation reaction with all metal ions. The new complexes, possessing the general formula [M(L)Cl]Cl where M=[Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV) and Hg(II) ] ,show tetrahedral geometry. All complexes ,except Pd(II) complex which has a square planar geometry and Pt(IV) which show an octahedral geometry. The geometry of the prepared compounds has been proposed in another method theoretically by using one of the calculation molecular programs (Hype
... Show More