Background: Diabetes mellitus a major factor that has adverse effects on the vascular system and the heart. It causes an increase in cardiac muscle thickness, resulting in decreased compliance and increased peripheral arterial stiffness. This study aims to assess the left ventricular mass (LVM) and left ventricular hemodynamic changes in diabetic patients measured by Doppler echocardiography. Patients and Methods: The study included 50 diabetic patients ranging in age between 25 and 80 years, (mean age: 54.1 ± 15.10, 19 males, 31 females) and 50 healthy subjects, aged 25 to 80 years (mean age: 48.52 ± 14.45, 11 males, 39 females). Doppler echocardiography was used to assess left ventricular function. The measurements included posterior wall thickness at diastole (PWTd), interventricular septum thickness at diastole (IVSTd), left ventricular diameter at the end of diastole (LVIDd), left ventricular diameter at the end of systole (LVIDs), peak velocity at atrial contraction (A), early peak velocity (E), left ventricular ejection fraction (LVEF%), left ventricular mass (LVM), and relative wall thickness (RWT). Results: The data showed that changes in E/A differences between diabetic patients and controls for age ranges 25 to 50 and 60 to 80 years were -24.60% and -31.93% (p < 0.05). There were non-significant differences in the LVIDd/LVIDs ratio between diabetic patients and controls for both age groups: 1.31% and 6.25%, respectively. For 25- to 50-year olds, the changes in RWT and LVM were 50% and 74.43%, respectively (p < 0.05), while the differences in RWT and LVM for 60- to 80-year olds were 48.71% and 70.06%, respectively (p < 0.05). Conclusion: The results indicate that diastolic dysfunction may be higher in diabetic patients compared to healthy subjects, which may be due to adverse influence of diabetes on cardiac muscle. These changes in left ventricular structure may include LV hypertrophy, increase in stiffness, and reduction in compliance, with increase in left ventricular mass, relative wall thickness, posterior wall thickness at diastole, and interventricular septum thickness at diastole.
Biodiesel can be prepared from various types of vegetable oils or animal fats with the aid of a catalyst.
Calcium oxide (CaO) is one of the prospective heterogeneous catalysts for biodiesel synthesis. Modification
of CaO by impregnation on silica (SiO2) can improve the performance of CaO as catalyst. Egg shells and rice
husks as biomass waste can be used as raw materials for the preparation of the silica modified CaO catalyst.
The present study was directed to synthesize and characterize CaO impregnated SiO2 catalyst from biomass
waste and apply it as catalyst in biodiesel synthesis. The catalyst was synthesized by wet impregnation
method and characterized by x-ray diffraction, x-ray fluorescence, nitr
The removal of heavy metal ions from wastewater by ion exchange resins ( zeolite and purolite C105), was investigated. The adsorption process, which is pH dependent, shows maximum removal of metal ions at pH 6 and 7 for zeolite and purolite C105 for initial metal ion
concentrations of 50-250 mg/l, with resin dose of 0.25-3 g. The maximum ion exchange capacity was found to be 9.74, 9.23 and 9.71 mg/g for Cu2+, Pb2+, and Ni2+ on zeolite respectively, while on purolite C105 the maximum ion exchange capacity was found to be 9.64 ,8.73 and 9.39 for Cu2+, Pb2+, and Ni2+ respectively. The maximum removal was 97-98% for Cu2+ and Ni2+ and 92- 93% for Pb2+ on zeolite, while it was 93-94% for Cu2+, 96-97% for Ni2+, and 87-88% for Pb2+ on puroli
A novel series of mixed-ligand complexes of the type, [ML1(L2)3]Clx [M= Cr(III), Fe(III), Co(II),Ni(II), Cu(II), Cd(II) and Hg(II), n = 2, 3], was synthesized using Schiff base (HL1) as main ligand, nicotinamide (L2) as secondary ligand, and the corresponding metal ions in 1:3:1 molar ratio. The main ligand, HL1 was prepared by the interaction of ampicillin drug and 4-chlorobenzophenone. The synthesized mixed ligand complexes were characterized by elemental analysis, UV-Vis, FT-IR,1H-NMR,13C-NMR and TG/DTG studies. In the mixed-ligand complexes, the Schiff base ligand, HL1 showed coordination to the central metal ion in tridentate manner via azomethine nitrogen, β-lactam ring oxygen and deprotonated carboxylic oxygen atoms, whereas the sec
... Show MoreThis study develops a systematic density functional theory alongside on-site Coulomb interaction correction (DFT + U) and ab initio atomistic thermodynamics approachs for ternary (or mixed transitional metal oxides), expressed in three reservoirs. As a case study, among notable multiple metal oxides, synthesized CoCu2O3 exhibits favourable properties towards applications in solar, thermal and catalytic processes. This progressive contribution applies DFT + U and atomistic thermodynamic approaches to examine the structure and relative stability of CoCu2O3 surfaces. Twenty-five surfaces along the [001], [010], [100], [011], [101], [110] and [111] low-Miller-indices, with varying surface-termination configurations were selected in this study.
... Show MoreThe search involve the synthesis of some new 1,3-oxazepine and 1,3-diazepine derivatives were synthesized from Schiff base. The Schiff base (VIII) prepared from reaction of aldehyde (IV) derived from L-ascorbic acid with aromatic amine ([2-(4- nitrophenyl)-5-(4-aminophenyl)-1,3,4-oxadiazole] (VII). Oxazepine compounds (IX-XI) were synthesized from the cyclic condensation of Schiff base (VIII) with (maleic, phthalic and 3-nitrophthalic) anhydride, compounds (IX-XI) that were reacted with p-methoxyaniline to give diazepine derivatives (XII-XIV). The structures of the new synthesized compounds have been confirmed by physical properties and spectroscopy measurements such as FTIR, and some of them by 1 H-NMR, 13 CNMR, Mass, and evaluated
... Show Morebstract The aim of this work covers the synthesis and characterization of the new tertra dentate ligand (H4L) containing (N and O) as donor set atoms kind (N2O2) where: H4L=Bis-1,2 (2,4- dihydroxybenzylediene phylinediamine . The preparation of ligand contains reaction 2, 4 - Dihydroxy benzaldehyde and o-phenylene diamine . Schiff base was reacted with some metal ions in the presence of methanol to give the complexes in the general formula [M (H2L)] where: MII = Co, Ni, Cu, Zn, Cd. All compounds were characterized by spectroscopic methods I.R , U.V.-Vis, metal content and molar conductivity measurements, showed that the complexes are non-electrolyte. The proposed geometry for all of the proposed complexes was a tetrahedral while Ni complex
... Show More