This study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Grading and sorting speed recorded the highest value and was 1.38 minutes.
The manual classification of oranges according to their ripeness or flavor takes a long time; furthermore, the classification of ripeness or sweetness by the intensity of the fruit’s color is not uniform between fruit varieties. Sweetness and color are important factors in evaluating the fruits, the fruit’s color may affect the perception of its sweetness. This article aims to study the possibility of predicting the sweetness of orange fruits based on artificial intelligence technology by studying the relationship between the RGB values of orange fruits and the sweetness of those fruits by using the Orange data mining tool. The experiment has applied machine learning algorithms to an orange fruit image dataset and performed a co
... Show MoreMalicious software (malware) performs a malicious function that compromising a computer system’s security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse dete
... Show MoreNatural Language Processing (NLP) deals with analysing, understanding and generating languages likes human. One of the challenges of NLP is training computers to understand the way of learning and using a language as human. Every training session consists of several types of sentences with different context and linguistic structures. Meaning of a sentence depends on actual meaning of main words with their correct positions. Same word can be used as a noun or adjective or others based on their position. In NLP, Word Embedding is a powerful method which is trained on large collection of texts and encoded general semantic and syntactic information of words. Choosing a right word embedding generates more efficient result than others
... Show MoreAs of late, humankind has experienced radiation issues either computerized tomography (CT) or X-rays. In this investigation, we endeavor to limit the effect of examination hardware. To do this the medical image is cropping (cut and zoom) then represented the vascular network as a graph such that each contraction as the vertices and the vessel represented as an edges, the area of the coagulation was processed already, in the current search the shortest distance to reach to the place of the blood vessel clot is computed
This paper proposes a new methodology for improving network security by introducing an optimised hybrid intrusion detection system (IDS) framework solution as a middle layer between the end devices. It considers the difficulty of updating databases to uncover new threats that plague firewalls and detection systems, in addition to big data challenges. The proposed framework introduces a supervised network IDS based on a deep learning technique of convolutional neural networks (CNN) using the UNSW-NB15 dataset. It implements recursive feature elimination (RFE) with extreme gradient boosting (XGB) to reduce resource and time consumption. Additionally, it reduces bias toward
... Show MoreThe Purpose of this study is mainly to improve the competitive position of products economic units using technique target cost and method reverse engineering and through the application of technique and style on one of the public sector companies (general company for vegetable oils) which are important in the detection of prices accepted in the market for items similar products and processing the problem of high cost which attract managerial and technical leadership to the weakness that need to be improved through the introduction of new innovative solutions which make appropriate change to satisfy the needs of consumers in a cheaper way to affect the decisions of private customer to buy , especially of purchase private economic units to
... Show MoreIn this paper, the problem of resource allocation at Al-Raji Company for soft drinks and juices was studied. The company produces several types of tasks to produce juices and soft drinks, which need machines to accomplish these tasks, as it has 6 machines that want to allocate to 4 different tasks to accomplish these tasks. The machines assigned to each task are subject to failure, as these machines are repaired to participate again in the production process. From past records of the company, the probability of failure machines at each task was calculated depending on company data information. Also, the time required for each machine to complete each task was recorded. The aim of this paper is to determine the minimum expected ti
... Show MoreA large number of researchers had attempted to identify the pattern of the functional relationship between fertility from a side and economic and social characteristics of the population from another, with the strength of effect of each. So, this research aims to monitor and analyze changes in the level of fertility temporally and spatially in recent decades, in addition to estimating fertility levels in Iraq for the period (1977-2011) and then make forecasting to the level of fertility in Iraq at the national level (except for the Kurdistan region), and for the period of (2012-2031). To achieve this goal has been the use of the Lee-Carter model to estimate fertility rates and predictable as well. As this is the form often has been familiar
... Show MoreIn this paper, the Monte-Carlo simulation method was used to compare the robust circular S estimator with the circular Least squares method in the case of no outlier data and in the case of the presence of an outlier in the data through two trends, the first is contaminant with high inflection points that represents contaminant in the circular independent variable, and the second the contaminant in the vertical variable that represents the circular dependent variable using three comparison criteria, the median standard error (Median SE), the median of the mean squares of error (Median MSE), and the median of the mean cosines of the circular residuals (Median A(k)). It was concluded that the method of least squares is better than the
... Show MoreThere are different types of young isolated NSs: radio pulsars, compact central X-ray sources in supernova, magentas: anomalous x-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs).This paper shows that the value of magnetic field (B), characteristic age ( ), spin down luminosity ( equilibrium period ( and Flux density ( ) was determined depending on some properties of pulsar star, such as the value of period of the pulsar (P) and the time derivative period ( for sample stars which were adopted. The model that which adopted is Hallo Cone Model. The results showed that the Normal pulsar stars have a big magnetic field, equilibrium period and Spin down than the Millisecond pulsar stars.But Millisecond pulsar stars have large values of
... Show More