Preferred Language
Articles
/
mBd_KY4BVTCNdQwCwzvA
Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Cybersecurity And Information Management
Machine Learning-based Information Security Model for Botnet Detection
...Show More Authors

Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet

... Show More
View Publication
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Sat Jan 10 2015
Journal Name
British Journal Of Mathematics & Computer Science
The Use of Gradient Based Features for Woven Fabric Images Classification
...Show More Authors

View Publication
Crossref
Publication Date
Mon Oct 09 2023
Journal Name
2023 Ieee 34th International Symposium On Software Reliability Engineering Workshops (issrew)
Semantics-Based, Automated Preparation of Exploratory Data Analysis for Complex Systems
...Show More Authors

View Publication
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Ieee Antennas And Wireless Propagation Letters
Stabilized and Fast Method for Compressive-Sensing-Based Method of Moments
...Show More Authors

View Publication
Scopus (12)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Journal Of Engineering
Prediction of Shear Strength Parameters of Gypseous Soil using Artificial Neural Networks
...Show More Authors

The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
Mathematical Modeling of Glucose Regulation System in Term of Perturbed Coefficients
...Show More Authors

In this research a recent developed practical modeling technique is applied for the glucose regulation system identification. By using this technique a set of mathematical models is obtained instead of single one to compensate for the  loss of information caused by the optimization technique in curve fitting algorithms, the diversity of members inside the single set is interpreted in term of restricted range of its parameters, also a diagnosis criteria is developed for detecting any disorder in the glucose regulation system by investigating the influence of variation of the parameters on the response of the system, this technique is applied in this research practically  for 20 cases with association of  National Center for

... Show More
View Publication Preview PDF
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Effectiveness of Meso-Scale Approach in Modeling of Plain Concrete Beam
...Show More Authors

The main aim of this research paper is investigating the effectiveness and validity of Meso-Scale Approach (MSA) as a modern technique for the modeling of plain concrete beams. Simply supported plain concrete beam was subjected to two-point loading to detect the response in flexural. Experimentally, a concrete mix was designed and prepared to produce three similar standard concrete prisms for flexural testing. The coarse aggregate used in this mix was crushed aggregate. Numerical Finite Element Analysis (FEA) was conducted on the same concrete beam using the meso-scale modeling. The numerical model was constructed to be a bi-phasic material consisting of cement mortar and coarse aggregate. The interface between the two c

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Feb 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Using Fuzzy Games Theory to Determine the optimal Strategy for The Mobile Phone Networks in The Baghdad And Basra governorates
...Show More Authors

      The objective of this research is employ the special cases of  function  trapezoid in the composition of fuzzy sets to make decision within the framework of the theory of games traditional to determine the best strategy for the mobile phone networks in the province of  Baghdad and Basra, has been the adoption of different periods of the  functions belonging to see the change happening in the matrix matches and the impact  that the strategies  and decision-making  available to each player and the impact on  societ

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jul 24 2018
Journal Name
Sensors
Adaptive Windowing Framework for Surface Electromyogram-Based Pattern Recognition System for Transradial Amputees
...Show More Authors

Electromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa

... Show More
View Publication
Crossref (25)
Clarivate Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Applied Energy
Novel mathematical modeling, performance analysis, and design charts for the typical hybrid photovoltaic/phase-change material (PV/PCM) system
...Show More Authors

Scopus (41)
Crossref (27)
Scopus Clarivate Crossref