In the present study, gold nanoparticles (AuNPs) were prepared using a simple low cost method synthesized cold plasma at different exposure time . The nanoparticles were characterized using UV-Visible spectra, X-ray diffraction (XRD). The prepared AuNPs showed surface Plasmon resonance centered at 530, 540,and 533 nm. The XRD pattern showed that the strong intense peaks indicate crystalline nature and face centered cubic structure of gold nanoparticles for all samples were prepared .The average crystallite size of the AuNPs was 20-40 nm. Morphology of the AuNPs were carried out using FESEM. Observations show that the AuNPs synthesized we well dispersed with and particle sizes ranging from 9 to 31 nm with spherical shapes which are clearly observed.The effect of AuNPs on mineral blood is studied with different doses durations (130,260,520) ppm. As the AuNPs doses increases, the Fe and Ca components in the blood increased, while The Na,Cl and K, and chlorine elements decreased. These results give an indication of the nanoparticles receptor to be used to treat many diseases related to mineral blood components.
A comparison of gas sensing performance of V2O5:Ag nanoparticles as thin film and as bulk pellet toward NO2 and NH3 is presented. V2O5:Ag nanoparticles thin films were deposited by vacuum thermal evaporation method on glass substrates while the pellets were prepared by powder technology. XRD patterns of thin film and pellet were polycrystalline with an orthorhombic structure. The value of average grain size is about 60 nm. The morphological properties of the samples have been distinguished by atomic force microscopy (AFM) and field effect scanning electron microscopy (FESEM) which indicated that the films showed homogeneous surfaces morphology a
... Show MoreMethotrexate (MTX), a folate antagonist agent, is mainly used in treatment of
malignant tumors and autoimmune diseases. The present study was undertaken to
determine whether antioxidant vitamin (vitamin A) could ameliorate methotrexateinduced
oxidative stress in male rabbits. Twenty male rabbits were randomly
assigned into four groups. Group 1: control group, Group 2: MTX-treated group
(received 20 mg/kg MTX intraperitoneally), Group 3: Vit.A treated group received
5000 IU Vit.A orally) and Group 4: MTX+Vit.A treated group received MTX 20
mg/kg plus 5000 IU vit.A). After 4 weeks of treatment, blood samples were
collected by cardiac puncture to determine the serum malondialdehyde (MDA), as a
good indicator for l
The effect of 0.66 µeV gamma radiation on the structural and optical properties of the CdTe thin films prepared by thermal evaporation at thickness 350nm, The samples were irradiated with time (50 h and 79h) at room temperature. The absorption spectra for all the samples were recorded using UV-VIS spectrometer in order to calculate the energy gap, refractive index and others parameter . The optical energy gap was found decrease from (1.9 to 1.67) eV.
Methotrexate (MTX), a folate antagonist agent, is mainly used in treatment of malignant tumors and autoimmune diseases. The present study was undertaken to determine whether antioxidant vitamin (vitamin A) could ameliorate methotrexate induced oxidative stress in male rabbits. Twenty male rabbits were randomly assigned into four groups. Group 1: control group, Group 2: MTX-treated group (received 20 mg/kg MTX intraperitoneally), Group 3: Vit.A treated group received 5000 IU Vit.A orally) and Group 4: MTX+Vit.A treated group received MTX 20 mg/kg plus 5000 IU vit.A). After 4 weeks of treatment, blood samples were collected by cardiac puncture to determine the serum malondialdehyde (MDA), as a good indicator for lipid peroxidation and
... Show MoreThe characteristics of atmospheric-pressure glow discharge (APGD) produced by rod-plate electrodes are experimentally determined. APGD is sustained by applying a high DC voltage between the electrodes. At atmospheric pressure, the shift from corona discharge to glow discharge is investigated. A rod-plate discharges configuration's volt–ampere properties show the existence of three discharge regimes: corona, glow, and spark. The variations in the electrical field distribution in the various regimes are mirrored in the discharge luminosity. The rod-plate patterns are created under a dark region, and are visible mainly due to the effect of electrons heated by the local enhanced electric field at the interface, according to the op
... Show MoreThe present work intends to study of dc glow discharge were generated between pin (cathode) and a plate (anode) in Ar gas is performed using COMSOL were used to study electric field distribution along the axis of the discharge and also the distribution of electron density and electron temperature at constant pressure (P=.0.0mbar) and inter electrode distance (d=4 cm) at different applied voltage for both pin cathode system and plate anode and comparison with experimental results.
Non-thermal atmospheric pressure plasma has emerged as a
new promising tool in medicine and biology. In this work, A DBD
system was built as a source of atmospheric pressure non-thermal
Plasma suitable for clinical and biological applications. E. coli and
staphylococcus spp bacteria were exposed to the DBD plasma for a
period of time as inactivation (sterilization) process. A series of
experiments were achieved under different operating conditions. The
results showed that the inactivation, of the two kinds of bacteria, was
affected (increasing or decreasing) according to operation conditions
because they affects, as expected, the produced plasma properties
according to those conditions.
DC glow discharges were generated between a thin cylindrical anode and a flat cathode, streamers are thought to propagate by photo-ionization; the parameters of photo-ionization depend on the He: CO ratio. Therefore we study streamers in He ( 90%, 80% and 70% ) with (10%, 20% and 30%) CO respectively. The streamer diameter is essentially the change by increase for similar voltage and pressure in all He-CO mixtures.
Numerical simulation of charge density produced in plasma actuators is dependent upon the development of models dealing with electrical properties. The main aim of this work is to investigate the characteristics surface charge density and space charge density of DBD plasma actuator. A simple design of surface dielectric barrier discharge plasma actuator is used in the study. The discharge gas was N2:H2 mixture with applied voltage equal to 1.5 kV. A theoretical plasma model is used to establish the charge density details. Results show that surface charge density increased in value and spread in width alone the exposed electrode as the voltage increased and reached to the amplitude value.