Because the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulation methods which are Mean Monte Carlo Finite difference (MMC_FD) and Mean Latin Hypercube Finite difference (MLH_FD), are also used to solve the proposed epidemic model under study. The obtained results are discussed, tabulated, and represented graphically. Finally, the absolute error is the tool used to compare the numerical simulation solutions from 2020 to 2024 years. The behavior of the Coronavirus in Iraq has been expected for 4 years from 2020 to 2024 using the proposed numerical simulation methods.
Background: COVID-19 has caused a considerable number of hospital admissions in China since December 2019. Many COVID-19 patients experience signs of acute respiratory distress syndrome, and some are even in danger of dying. Objective: to measure the serum levels of D-dimer, Neutrophil-Lymphocyte count ratio (NLR), and neopterin in patients hospitalized with severe COVID-19 in Baghdad, Iraq. And to determine the cut-off values (critical values) of these markers for the distinction between the severe patients diagnosed with COVID‐19 and the controls. Materials and methods: In this case-control study, we collect blood from 89 subjects, 45 were severe patients hospitalized in many Baghdad medical centers who were diagnosed with COVID
... Show MoreObjective: The study the association of procalcitonin (PCT) and c-reactive protein (CRP) levels in COVID-19 patients and it's role as a guide in progress and management of those patients. Methodology: This cross-sectional study analyzed 200 CIOVID-19 patients in a single privet center in Baghdad, Iraq from January 1, 2021 to January 1, 2022. Demographic data like age, sex, and clinical symptoms were recorded. High sensitivity CRP and PCT in the serum were measured via dry fluorescence immunoassay (Lansionbio-China). Results: Out of 200 patients, 50 had moderate Covid and 150 had severe disease. Mean serum PCT levels was 0.039±0.05 ng/mL in the moderate group (range 0.011-0.067) and 0.43±0.21 ng/mL in the severe group (range 0.21
... Show MoreMachine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims
... Show MoreBackground: since December 2019, China and in particularly Wuhan, faced an unprecedented an outbreak challenge of coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2. Clinical characteristics of Iraqi patients with COVID-19 and risk factors for mortality needed to be shared with the health care providers to improve the overall disease experience. Methods: prospective, single-center study recruited patients with confirmed SARS-CoV-2 infection who were admitted to Al-Shifaa Isolation Center / Baghdad Medical City between the mid of March and the end of April 2020 until had been discharged or had died. Demographic data, information on clinical signs, symptoms, at presentation, treatment, have been collected
... Show MoreBackground: Coronavirus, which causes respiratory illness, has been a public health issue in recent decades. Because the clinical symptoms of infection are not always specific, it is difficult to expose all suspects to qualitative testing in order to confirm or rule out infection as a test. Methods: According to the scientific studies and investigations, seventy-three results of scientific articles and research were obtained using PubMed, Medline, Research gate and Google Scholar. The research keywords used were COVID-19, coronavirus, blood parameters, and saliva. Results: This review provides a report on the changes in the blood and saliva tests of those who are infected with the COVID-19.COVID-19 is a systemic infection that has
... Show MoreThe pandemic of coronavirus disease 2019 (COVID-19), first reported in China, in December 2019 and since then the digestive tract involvement of COVID-19 has been progressively described. In this review, I summed recent studies, which have addressed the pathophysiology of COVID-19-induced gastrointestinal symptoms, their prevalence, and bowel pathological and radiological findings of infected patients. The effects of gut microbiota on SARS-CoV-2 and the challenges of nutritional therapy of the infected patients are depicted. Moreover, I provide a concise summary of the recommendations on the management of inflammatory bowel disease, colorectal cancer, and performing endoscopy in the COVID era. Finally, the COVID pancreatic re
... Show MoreThe COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is fre
... Show MoreIn this paper reliable computational methods (RCMs) based on the monomial stan-dard polynomials have been executed to solve the problem of Jeffery-Hamel flow (JHF). In addition, convenient base functions, namely Bernoulli, Euler and Laguerre polynomials, have been used to enhance the reliability of the computational methods. Using such functions turns the problem into a set of solvable nonlinear algebraic system that MathematicaⓇ12 can solve. The JHF problem has been solved with the help of Improved Reliable Computational Methods (I-RCMs), and a review of the methods has been given. Also, published facts are used to make comparisons. As further evidence of the accuracy and dependability of the proposed methods, the maximum error remainder
... Show More