We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). Standard Deviation, Mean, Energy and Entropy are extorted using the histogram approach for each merger space. These features are found to be higher in occurrence in the tumor region than the non-tumor one. MRI scans of the five brains with 60 slices from each are utilized for testing the proposed method’s authenticity. These brain images (230 slices as normal and 70 abnormal) are accessed from the Internet Brain Segmentation Repository (IBSR) dataset. 60% images for training and 40% for testing phase are used. Average classification accuracy as much as 98.02% (training) and 98.19% (testing) are achieved.
RA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
BACKGROUND: Coronavirus current pandemic (COVID-19) is the striking subject worldwide hitting countries in an unexplained non-universal pattern. Bacillus Calmette–Guérin (BCG) vaccine was an adopted recent justification depending on its non-specific immune activation properties. Still the problem of post-vaccine short duration of protection needs to be solved. The same protective mechanism was identified in active or latent tuberculosis (TB). For each single patient of active TB, there are about nine cases of asymptomatic latent TB apparently normal individuals living within the community without restrictions carrying benefits of immune activation and involved in re-infection cycles in an excellent example of repeated immunity tr
... Show MoreSystole merazvensis sp. n. from Iraq, is described, figuri4 and differentiated from ,other species of the genus Systok.
The antimicrobial activity of two naphthoquinone semicarbazone derivatives (Two newly synthesized compounds) have been studied by using tube — diluation and disc plate technique. The effect of those derivatives upon pathogenic microorganism iso-lated from specimen(urine iwounds,stool, swabs, throat ....etc) have been studied also in comparison with the antibiotics (amikacin,ampicillin, carbencillin, cephalothin, cefoxitin,clindamycin ,erythromycin,gentamycin,penicillin,tetracylin and tri-methoprim. It was shown that derivative(1) had more effective against micro organ-ism than derivative(11).
Spergularia iraqensis sp. nov. is described as a new species from Iraq. This species has been collected from Diyala Province in the central east of Iraq; it is closely related to Spergularia rubra (L.) J. Presl & C. Presl, 1819 and Spergularia bocconei (Scheele) Graebn., 1919.
The distinguishing of the morphological characteristics of the new species alongside the two similar species are discussed with photographs, and an identification key is given for Spergularia iraqensis and other closely related species.
This work is an experimental study about the effects of gas pressure and magnetic field on plasma characteristics produced in an internal hollow electrodes discharge (HED) system. The results show that the breakdown voltage values increase with increasing the working pressure (especially with the presence of a magnetic field). The breakdown voltage depends on the p.d. product, where p is the gas pressure and d is the distance between the electrodes. While the values of current discharge decrease with the increase of the working pressure. The temperature of electron and the number density of electron are calculated from the Boltzmann method and the broadening of Stark, respectively. The results showed that the electron number d
... Show MoreDigital image started to including in various fields like, physics science, computer science, engineering science, chemistry science, biology science and medication science, to get from it some important information. But any images acquired by optical or electronic means is likely to be degraded by the sensing environment. In this paper, we will study and derive Iterative Tikhonov-Miller filter and Wiener filter by using criterion function. Then use the filters to restore the degraded image and show the Iterative Tikhonov-Miller filter has better performance when increasing the number of iteration To a certain limit then, the performs will be decrease. The performance of Iterative Tikhonov-Miller filter has better performance for less de
... Show MoreCoronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show More