Preferred Language
Articles
/
lxfjPo8BVTCNdQwCwGXX
A New Method for Detecting Cerebral Tissues Abnormality in Magnetic Resonance Images
...Show More Authors

We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). Standard Deviation, Mean, Energy and Entropy are extorted using the histogram approach for each merger space. These features are found to be higher in occurrence in the tumor region than the non-tumor one. MRI scans of the five brains with 60 slices from each are utilized for testing the proposed method’s authenticity. These brain images (230 slices as normal and 70 abnormal) are accessed from the Internet Brain Segmentation Repository (IBSR) dataset. 60% images for training and 40% for testing phase are used. Average classification accuracy as much as 98.02% (training) and 98.19% (testing) are achieved.

Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Clouds Height Classification Using Texture Analysis of Meteosat Images
...Show More Authors

In the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Artificial Intelligence For Covid-19
An Efficient Mixture of Deep and Machine Learning Models for COVID-19 and Tuberculosis Detection Using X-Ray Images in Resource Limited Settings
...Show More Authors

View Publication
Scopus (29)
Crossref (25)
Scopus Crossref
Publication Date
Sun Sep 01 2019
Journal Name
Journal Of Physics: Conference Series
Integral transforms defined by a new fractional class of analytic function in a complex Banach space
...Show More Authors
Abstract<p>In this effort, we define a new class of fractional analytic functions containing functional parameters in the open unit disk. By employing this class, we introduce two types of fractional operators, differential and integral. The fractional differential operator is considered to be in the sense of Ruscheweyh differential operator, while the fractional integral operator is in the sense of Noor integral. The boundedness and compactness in a complex Banach space are discussed. Other studies are illustrated in the sequel.</p>
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Sun Jul 01 1990
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
CHALCIDOID (HYMENOPTERA.) PARASITES OF THE BRUCHID BEETLES IN IRAQ WITH A DESCRIPTION OF A NEW SPECIES)
...Show More Authors

The present work deals with five species of parasitic Hymenoptera belonging to Pteromalidae, Eupelmidae and Eurytornidae which have been reared from brachid beetles. A new species, Eurytoma irakensis is described and the species, Bruchocida orientalis Crawford is recorded for the first time from Iraq.

View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Scopus (14)
Crossref (5)
Scopus Crossref
Publication Date
Mon Apr 01 2024
Journal Name
Baghdad Science Journal
Simultaneous spectrophotometric method for determination of both ciprofloxacin and cephalexin by using H-point standard addition method
...Show More Authors

طريقة سهلة وبسيطة ودقيقة لتقدير السبروفلوكساسين  في وجود السيفاليكسين او العكس بالعكس في خليط منهما. طبقت الطريقة المقترحة بطريقة الاضافة القياسية لنقطة بنجاح في تقدير السبروفلوكساسين بوجود السيفاليكسين كمتداخل عند الاطوال الموجية 240-272.3 نانوميتر وبتراكيز مختلفة من  السبروفلوكساسين 4-18 مايكروغرام . مل-1 وكذلك تقدير السيفاليكسين بوجود السبروفلوكساسين الذي يتداخل باطوال موجية 262-285.7 نانوميتر وبتراكيز مخ

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Preview PDF
Publication Date
Mon Feb 01 2021
Journal Name
Materials Science And Engineering
Effect of magnetic water on strength properties of concrete
...Show More Authors
Abstract<p>The research’s main goal is to investigate the effects of using magnetic water in concrete mixes with regard to various mechanical properties such as compressive, flexural, and splitting tensile strength. The concrete mix investigated was designed to attain a specified cylinder compressive strength (30 MPa), with mix proportions of 1:1.8:2.68 cement to sand to crushed aggregate. The cement content was about 380 kg/m<sup>3</sup>, with a w/c ratio equal to 0.54, sand content of about 685 kg/m3, and gravel content of about 1,020 kg/m3. Magnetic water was prepared via passing ordinary water throughout a magnetic field with a magnetic intensity of 9,000 Gauss. The strength test</p> ... Show More
Crossref (6)
Crossref
Publication Date
Fri Feb 17 2012
Journal Name
Smart Materials And Structures
Frequency tuning of piezoelectric energy harvesters by magnetic force
...Show More Authors

View Publication
Scopus (108)
Crossref (97)
Scopus Clarivate Crossref
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means
...Show More Authors

Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.

View Publication Preview PDF
Crossref