We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). Standard Deviation, Mean, Energy and Entropy are extorted using the histogram approach for each merger space. These features are found to be higher in occurrence in the tumor region than the non-tumor one. MRI scans of the five brains with 60 slices from each are utilized for testing the proposed method’s authenticity. These brain images (230 slices as normal and 70 abnormal) are accessed from the Internet Brain Segmentation Repository (IBSR) dataset. 60% images for training and 40% for testing phase are used. Average classification accuracy as much as 98.02% (training) and 98.19% (testing) are achieved.
This work used the deposition method to synthesize nickel oxide nanoparticles. The materials mainly used in this study were nickel sulfate hexahydrate (as a precursor) and NaOH (as a precipitant). The properties of the nanopowder were characterized by XRD, FE-SEM, EDX, and VSM. The obtained results confirmed the presence of nickel oxide nanoparticles with a face-centered cubic (FCC) structure with a lattice constant (a=4.17834 Å). Scherer and Williamson-Hall equations were used to calculate the crystallite size of about (30.5-35.5) nm. The FE-SEM images showed that the particle shape had a ball-like appearance with a uniform and homogeneous distribution and confirmed that the particles were within the nanoscale. The presence of oxygen a
... Show MoreIn this paper, an experimental study has been conducted regarding the indication of resonance in chaotic semiconductor laser. Resonant perturbations are effective for harnessing nonlinear oscillators for various applications such as inducing chaos and controlling chaos. Interesting results have been obtained regarding to the effect of the chaotic resonance by adding the frequency on the systems. The frequency changes nonlinear dynamical system through a critical value, there is a transition from a periodic attractor to a strange attractor. The amplitude has a very relevant impact on the system, resulting in an optimal resonance response for appropriate values related to correlation time. The chaotic system becomes regular under
... Show MoreRadar is the most eminent device in the prolonged scattering era The mechanisms involve using electromagnetic waves to take Synthetic Aperture Radar (SAR) images for long reaching. The process of setting edges is one of the important processes used in many fields, including radar images, which assists in showing objects such as mobile vehicles, ships, aircraft, and meteorological and terrain forms. In order to accurately identify these objects, their edges must be detected. Many old-style methods are used to isolate the edges but they do not give good results in the determination process. Conservative methods use an operator to detect the edges, such as the Sobel operator which is used to perform edge detection where the edge does
... Show MoreThis study is unique in this field. It represents a mix of three branches of technology: photometry, spectroscopy, and image processing. The work treats the image by treating each pixel in the image based on its color, where the color means a specific wavelength on the RGB line; therefore, any image will have many wavelengths from all its pixels. The results of the study are specific and identify the elements on the nucleus’s surface of a comet, not only the details but also their mapping on the nucleus. The work considered 12 elements in two comets (Temple 1 and 67P/Churyumoy-Gerasimenko). The elements have strong emission lines in the visible range, which were recognized by our MATLAB program in the treatment of the image. The percen
... Show MoreThis paper presents designing an adaptive state feedback controller (ASFC) for a magnetic levitation system (MLS), which is an unstable system and has high nonlinearity and represents a challenging control problem. First, a nonadaptive state feedback controller (SFC) is designed by linearization about a selected equilibrium point and designing a SFC by pole-placement method to achieve maximum overshoot of 1.5% and settling time of 1s (5% criterion). When the operating point changes, the designed controller can no longer achieve the design specifications, since it is designed based on a linearization about a different operating point. This gives rise to utilizing the adaptive control scheme to parameterize the state feedback controll
... Show MoreImage compression is very important in reducing the costs of data storage transmission in relatively slow channels. Wavelet transform has received significant attention because their multiresolution decomposition that allows efficient image analysis. This paper attempts to give an understanding of the wavelet transform using two more popular examples for wavelet transform, Haar and Daubechies techniques, and make compression between their effects on the image compression.
Echocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.