The CIGS/CdS p-n junction thin films were fabricated and deposited at room temperature with rate of deposition 5, and 6 nm secG1 , on ITO glass substrates with 1mm thickness by thermal evaporation technique at high vacuum pressure 2×10G5 mbar, with area of 1 cm2 and Aluminum electrode as back contact. The thickness of absorber layer (CIGS) was 1 µm while the thickness of the window layer CdS film was 300 nm. The X-ray Diffraction results have shown that all thin films were polycrystalline with orientation of 112 and 211 for CIGS thin films and 111 for CdS films. The direct energy gaps for CIGS and CdS thin films were 1.85 and 2.4 eV, respectively. Atomic Force Microscopy measurement proves that both films CIGS and CdS films have nanostructures. The carrier concentration, Hall mobility and the conductivity of CIGS and CdS thin films were calculated by hall effect measurement showing that p = 3.56×1010 cmG3 and n = 1.76×1014 cmG3 , respectively. The J-V characteristics for CIGS/CdS solar cells were measured when illuminated with 1000 W mG2 , the efficiency were calculated before and after annealing with temperature 100 200 and 300°C for one hour in vacuum oven. The results indicate that the efficiency decreases with increasing annealing temperature of CIGS\CdS solar cell.
Iron oxide(Fe3O4) nanoparticles of different sizes and shapes were synthesized by solve-hydrothermal reaction assisted by microwave irradiation using ferrous ammonium sulfate as a metal precursor, oleic acid as dispersing agent, ethanol as reducing agent and NaOH as precipitating agent at pH=12. The synthesized Fe3O4 nano particles were characterized by X-ray diffraction (XRD), FTIR and thermal analysis TG-DTG. Sizes and shapes of Fe3O4 nanoparticles were characterized by Scanning Electron Microscopy (SEM), and atomic force microscopy (AFM).
A new ligand [N-(4-nitrobenzoylamino)-thioxomethyl] phenylalanine is synthesized by reaction of 4-nitrobenzoyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(NBA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper and palladium complexes are have square planer geometry.
The emergence of staphylococci, either coagulase negative (CNS) or coagulase positive (CPS), as important human pathogens has implied that reliable methods for their identification are of large significance in understanding the diseases caused by them. The identification and characterization of staphylococci from biopsies taken from human breast tumors is reported here. Out of 32 tissue biopsies, a total of 12 suspected staphylococci grew on mannitol salt agar (MSA) medium, including 7 fermenters and 5 non-fermenter staphylococci based on traditional laboratory methods. Polymerase chain reaction (PCR) successfully identified seven isolates at the genus level as methicillin resistant Staphylococcus spp. by targeting a common region of the me
... Show MoreA new ligand [4-Methoxy -N-(pyrimidine-2-ylcarbamothioyl) benzamide] (MPB) was synthesized by reactioniofi(4-Methoxyibenzoyliisothiocyanate)withi(2-aminopyri-midine). The Ligand was characterized by elemental micro analysis (C.H.N.S),(FT-IR) (UV- Vis) and (1Hi,13CNMR)spectra. Some transition metals complexes of this ligand were prepared and characterized by (FT-IR, UV-Vis) spectra conductivity measurements magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all complexes was suggested to be [M(MPB)2Cl2] (M+2i=Cu, Mn, Co ,Ni ,Zn ,Cd and Hg),the proposed geometrical structure for all complexes was an octahedral.
A new ligand [N-(3-acetylphenylcarbamothioyl)-4-chlorobenzamide] (CAD) was synthesized by reaction of 4-Chlorobenzoyl isothiocyanate with 3-amino acetophenone, The ligand was characterized by elemental micro analysis C.H.N. S., FT-IR, UV-Vis and 1H,13C- NMR spectra, some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(CAD)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral.
A new ligand [N-(4-nitrobenzoylamino)-thioxomethyl] phenylalanine is synthesized by reaction of 4-nitrobenzoyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(NBA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper and palladium complexes are have square planer geometry.
The new compounds synthesized by sequence reactions starting from a reaction of 4-hydroxybenzaldehyde with 1,5-dibromo pentane to produce dialdehyde)I( .Then compound )I( reacted with different aromatic amines to give schiff bases )IIIV(,thereafter added acetyl chloride to schiff bases to yield N-acyl derivatives)VVII(.While1,3-diazetine derivatives)VIII-X( were synthesized from the reaction of N-acyl derivatives with sodium azide.The reaction of thiourea with N-acyl compounds led to formation of thiourea derivatives (XI-XIII).Finally, the pyrimidine compounds )XIV-XVI( were synthesized by ring closure reaction of compounds(XIXIII) with diethyl malonate.The synthesized compounds were characterized by measurements of melting points,FTIR,1H-N
... Show MoreIn this work, the preparation of some new oxazolidine and thiazolidine derivatives has been conducted. This was done over two steps; the first step included the synthesis of Schiff bases A1-A5 in 72-88% yields by the condensation of isonicotinic acid hydrazide and aldehydes. The second step includes the cyclization of derivatives A1-A5 with glycolic acid and thioglycolic acid to obtain the desired products, oxazolidine derivatives B1-B5 (44-60% yields) and thiazolidine derivatives C1-C5 (41-61% yields), respectively. The structure of the prepared compounds was characterized using FT-IR, 1H NMR, and 13C NMR spectroscopy. Some of the produced compounds were tested for antioxidant properties.