This research deals with a shrinking method concernes with the principal components similar to that one which used in the multiple regression “Least Absolute Shrinkage and Selection: LASS”. The goal here is to make an uncorrelated linear combinations from only a subset of explanatory variables that may have a multicollinearity problem instead taking the whole number say, (K) of them. This shrinkage will force some coefficients to equal zero, after making some restriction on them by some "tuning parameter" say, (t) which balances the bias and variance amount from side, and doesn't exceed the acceptable percent explained variance of these components. This had been shown by MSE criterion in the regression case and the percent explained variance in the principal components case.
Foliar application and seed soaking has been used as a means of supplying supplemental doses of nutrients, plant hormones, stimulants, and organic components. the effects of these applications have included yield increases, and improved drought tolerance, and enhanced crop quality, so A field experiment was carried out during spring seasons in 2019 and 2020 for styding Seed soaking and Foliar Application of Ascorbic acid, Citric acid and Humic acid on Growth, Yield and Active Components IN Maize. Randomized complete block design in split plots arrangement was used with three replicates. Main-plots were for seeds soaking with ascorbic, citric (100 mg l-1) frequently and humic at (1 ml l-1). Sub-plots were for vegetative parts nutrition with
... Show MoreThis paper applies the Modified Adomian Decomposition Method (MADM) for solving Integro-Differential Inequality, this method is one of effective to construct analytic approximate solutions for linear and nonlinear integro-differential inequalities without solving many integrals and transformed or discretization. Several examples are presented, the analytic results show that this method is a promising and powerful for solving these problems.
This research investigates the subject of the impact of wars (as a manifestation of crisis) on architecture, and the extent of continuing wars physical and moral results of wars, even after the end of the cause of the crisis. The impact of different rebuilding which exposed to the effects of the war seems different in crisis regions.
The problem of research is about the uncertainty of the impact of the way chooses for reconstructing the buildings after wars in the continuity of the crisis of war. The goals of this research are to clarify the influence of methods of reconstruction of buildings in a city chosen which is Beirut, on the continuation of the war crisis with the argument of demolishing and rebuilding newly or keeping tr
... Show MoreIn this research, we dealt with the study of the Non-Homogeneous Poisson process, which is one of the most important statistical issues that have a role in scientific development as it is related to accidents that occur in reality, which are modeled according to Poisson’s operations, because the occurrence of this accident is related to time, whether with the change of time or its stability. In our research, this clarifies the Non-Homogeneous hemispheric process and the use of one of these models of processes, which is an exponentiated - Weibull model that contains three parameters (α, β, σ) as a function to estimate the time rate of occurrence of earthquakes in Erbil Governorate, as the governorate is adjacent to two countr
... Show MoreThe techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of
... Show MoreIn this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.
The 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and
... Show MoreThis paper presents a fully computerized method to backup the router configuration file. The method consists of a friendly graphical interface programmed by Java programming language.
The proposed method is compared with the two existing methods, namely: TFTP server method and Copy/Paste method. The comparison reveals that the proposed method has many advantages over the existing ones. The proposed method has been implemented on Cisco routers (series 2500, 2600 and 2800).
In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf
... Show More